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1 Introduction

Since its introduction the unparticle physics scenario of Georgi [1, 2] has attracted a con-

siderable amount of attention. The premise of this scenario is the existence of interactions

between Standard Model (SM) and a hidden conformal field theory (CFT) sector. A key

distinction compared to earlier models coupling the SM (and its supersymmetric general-

izations) to approximate CFTs (e.g., [3]) is that Georgi’s hidden sector CFT is conformal

below the TeV scale. At low energies accessible to the experiments, there are effective

couplings between SM currents and CFT operators. As an example, a vector current in

the SM, jµ
SM , is coupled to a vector operator Oµ in the CFT via

c0

ΛdV −1
jµ
SMOµ, (1.1)

where c0 is a dimensionless coupling and dV is the conformal dimension of Oµ, not neces-

sarily an integer.

The resulting phenomenology can be quite interesting and qualitatively different from

the commonly considered scenarios of new physics, in which new particles have definite

masses [1, 2]. States in the CFT can be excited either through energetic collisions between,

or in the decays of, SM particles. For example, SM-unparticle interactions could lead to

processes with unparticles U in the final state, e.g., q + q̄ → G + U , t → c + U [1], as

well as provide additional channels for processes between the SM particles, e.g., in the

e+e− → µ+µ− scattering [2]. For a representative list of references of various signatures of

the unparticles in collider physics, astrophysics, neutrino oscillations, etc, see, e.g., [4].

In addition to phenomenological signatures, as stressed by Georgi himself [5], there

are many interesting theoretical issues surrounding unparticles that deserve investigation.

In fact, over the last two years, many thought-provoking discussions of the subject have

emerged. For example, it was shown how the unparticle spectrum could be discretized

and how the effect could be modeled with warped extra dimensions [6]. This discretization

and its connection to the “hidden valley” framework [7] was further discussed in [8]. The

connection between unparticles and QCD-like theories, including an approximate power-

law scaling of the QCD spectral function, was discussed in [9].

The unparticle scenario inspired an intriguing proposal for solving the “little hierarchy

problem” by promoting the Higgs Boson to a “UnHiggs” having a large anomalous dimen-

sion and a gapped continuous mass spectrum [10–12]. An “unparticle action” that can be

used to describe unparticle physics in a range of conformal dimensions [13] was proposed

in [14], with several consistency checks using ’t Hooft anomaly matching performed in [15].

– 1 –
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Several crucial observations about unparticles were made by Grinstein, Intriligator

and Rothstein (GIR) [16], as described in details below. Finally, the work of Georgi and

Kats [17, 18] explored several important conceptual issues in unparticle physics, such as

the process of dimensional transmutation and unparticle self-interactions, using an exactly

solvable realization in two dimensions.

The goal of this paper is to seek a model that has unparticle behavior in four space-

time dimensions. The motivation is two-fold. First, it is an important issue of principle:

having a concrete model of this type would provide a laboratory for addressing conceptual

questions in unparticle physics. Second, such a model can be used as a framework for

phenomenological studies, and may help to avoid certain pitfalls.

Of course, it must be kept in mind that certain properties can — and, in fact, as we

discuss later, do — vary between different realizations of unparticles. At the same time,

certain others are universal, being consequences of the basic principles, such as conformal

invariance or dimensional analysis. These universal properties must be reproduced by any

candidate realization of the unparticle physics scenario.

What are these universal properties? First of all, the “unparticle propagator” should

have the conformal scaling behavior and also, importantly, a certain phase. Refs. [1, 2]

obtained these results by imposing scale invariance on the spectral function,

〈O(p)O(−p)〉 ∝
∫ ∞

0
dM2 (M2)d−2

p2 − M2 + iǫ
=

π(−p2 − iǫ)d−2

sin dπ
=

π(p2)d−2e−i(d−2)π

sin dπ
. (1.2)

Next, as noted by GIR and also in [19], the dimension d of the unparticle propagator

should satisfy the CFT unitarity bounds [20]. Furthermore, GIR noted that values d ≥ 2

at which the integral in (1.2) diverges are allowed. For those values, the unparticle sce-

nario must additionally contain contact interactions between the SM fields. These contact

interactions are necessary to cure the divergence in the spectral integral and, moreover,

are very important phenomenologically, as they dominate over the unparticles in SM-SM

scattering processes. Finally, the tensor structure of the unparticle propagator is fixed by

the conformal group [21, 22]. In particular, in position space, the CFT vector two-point

function is

〈Oµ(x)Oν(0)〉 =
1

2π2

ηµν − 2xµxν/x
2

x2dV

, (1.3)

which in momentum space becomes (for p2 > 0) [16]

〈Oµ(p)Oν(−p)〉 =
(dV − 1)Γ(2 − dV )

4dV −1Γ(dV + 1)
(−p2)dV −2

[

−ηµν +
2(dV − 2)

dV − 1

pµpν

p2

]

. (1.4)

We propose here that the models based on warped extra spacetime dimensions, specif-

ically the famous Randall-Sundrum 2 (RS 2, [23]) and Lykken-Randall (LR, [24]) brane

constructions, with the SM fields on the brane and new fields in the bulk in fact realize

unparticle physics. We will show, using a simple example of the bulk vector field, that

both of these models reproduce all the requisite properties listed above.

We wish to stress that ours is not the first assertion that constructions based on the

AdS/CFT correspondence could realize unparticle physics [6, 8, 13, 25]. The issue is

– 2 –
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whether such “holographic” constructions yield theories that are merely similar to unpar-

ticle physics (“unparticle-like”), or are genuine realizations of it. At the moment, there

does not seem to be a consensus in the literature on this point. To the best of our knowl-

edge, ours is the first systematic analysis that establishes all of the unparticle properties

in these setups.

The holographic models are different from the framework for the unparticle scenario

originally envisioned in [1, 2]. The latter involves a purely four-dimensional Banks-Zaks

(BZ) [26] sector coupled to the SM by messenger fields at a high mass scale, MU . If

below MU the BZ couplings flow into an infrared fixed point — at the “transmutation”

scale ΛU ≪ MU — the hidden CFT sector is obtained.1 It is important to stress that,

conceptually, there is nothing inherently superior or inferior about one framework versus

another. In fact, they model the unparticle sector in different regimes. The BZ realization

teaches us about the unparticle sector in the weak (perturbative) regime, and can be used

quite effectively, as demonstrated by GIR. Instead, the RS 2/LR realizations allow us to

extend their results to strong coupling (large Nc). We will return to this important point

at the end of the paper.

From the practical standpoint, the RS 2/LR constructions make it possible to study

what would be a quantum behavior in the CFT sector with classical equations in the bulk.

This makes many of the key unparticle effects, such as the contact terms, the production of

unparticles, and the CFT unitarity bounds, particularly transparent and intuitive. It also

allows us to easily go beyond simply confirming these properties. With little additional

effort, we find several interesting effects: (i) we see how the contact terms are resolved

at short distances; (ii) we show that, unlike in the scalar case, a vector in AdS cannot

have a negative mass squared; (iii) finally, we explore an interesting interplay between

long-distance (pure CFT) and low-momentum-transfer (CFT subdominant) behaviors.

A brief outline of this paper is as follows. In section 2, we review some of the relevant

work on the AdS/CFT correspondence and vector fields in warped backgrounds. Section 3

contains a preliminary discussion of the spectral function, as well as of bulk fields in flat

extra dimensions. This discussion is intended as a precursor to our analysis of the RS 2

and LR models. Section 4 derives the bulk field equations (section 4.1) and the boundary

conditions (section 4.2) for the RS 2 and LR models.

The main analysis for the RS 2 model is presented in section 5. The propagator is

derived in sections 5.1, 5.2, 5.3. The unparticle properties are established in section 5.4

and the position space propagator is studied in section 5.5. Section 5.6 considers two

generalizations from D = 4 to arbitrary space-time dimension D on the brane. We obtain

a generalized unitarity bound on the conformal dimension of vector operators and consider

when the contact interactions dominate over the CFT contribution in scattering processes.

Section 6 discusses features of the brane-to-brane propagator for SM observers localized to

a LR brane. We conclude in section 7.

This paper is a continuation and an extension of [27] where some of the main results

for the RS 2 model were stated in a condensed form. The reader may wish to consult [27]

1The scale Λ appearing in eq. (1.1) is then a phenomenological scale, depending on both MU and ΛU .

– 3 –
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for a short summary and overall discussion. Most of the relevant derivations are omitted

there and presented here for the first time. Additionally, the results for the LR model here

are new.

2 Literature overview

That the RS 2 model has a connection to a CFT is very well known, and was first noted ten

years ago by Maldacena (unpublished), Witten [28] and later by [29–33] and others. The

holographic interpretation of the LR model has also been discussed, for example in [31].

Both stem from the celebrated AdS/CFT correspondence [34–36]. As shown in [36], any

field theory on AdSd+1 is linked to a conformal field theory on the boundary. This follows

from the rescaling freedom one has when extending the metric to the AdS boundary (as

stressed in [22]). It is then perhaps not surprising that models based on warped extra

dimensions should at least share some features with unparticle physics, which contains a

CFT as one of its sectors. The conformal symmetry is, however, broken in the UV, both

in the RS 2 model and in the unparticle scenario. The issue therefore is not to reexamine

the AdS/CFT correspondence, but to understand the correspondence of both the CFT-

preserving and CFT-breaking effects in both scenarios.

Specifically, in the RS 2 and LR models the brane is not at the boundary of the AdS

space, hence the CFT description does not hold above a certain UV scale. Moreover, in

the low-energy regime the situation is subtle. As seen explicitly later in this paper, the

theory one obtains on the brane is not a pure CFT even in this limit. Rather, the leading

interaction has a contact nature, which, however, is exactly the property of unparticle

physics [16].

To analyze the RS 2/unparticle connection, we will consider a scenario with SM fields

on the brane and a vector field in the bulk. For our purpose we then need to know the

properties of the massive vector field in the RS 2 and LR models, particularly the complete

brane-to-brane propagator (with both transverse and longitudinal parts). Somewhat sur-

prisingly to us, a complete study of this problem is lacking in the literature. refs. [31, 37],

for example, only consider vector fields with zero bulk mass. Ref. [38] does examine the

massive case, but only the transverse modes of the vector field are considered.

The reason why relatively little attention has been focused on vector fields in the orig-

inal RS 2 setup perhaps has to do with phenomenological motivations. A considerable

effort has been focused on models with a vector zero-mode on the brane, which could be

identified with a gauge boson. As shown in [39], unlike a scalar, a vector in the RS 2 back-

ground does not have a zero-mode bound to the brane purely by gravity.2 The two possible

extensions to overcome this considered in the literature involve adding a term on the brane

that cancels the mass [41, 42] and adding extra compact dimensions [43–46]. While some

of the steps in these analyses are common with our problem,3 the full propagator for the

2A field theoretic mechanism of confining vector fields is discussed in [40].
3Ref. [41] studies all four polarizations at intermediate steps in the calculation. The analysis is not taken

as far as here, however. In particular, the CFT tensor structure is not explicitly restored and unitarity is

not discussed. Ref. [42] investigates massive bulk vector bosons by utilizing the Stuckelberg mechanism; the

– 4 –
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original RS 2 setup – and the unparticle properties that are obtained from it — do not

readily follow from these studies.

Another direction of phenomenological interest was to investigate a similarity between

AdS and QCD. The paper [47] on this topic implicitly contains the longitudinal polarization

of the axial correlator as the Higgs field in the bulk. Only the transverse propagator for

the vector correlator is given, however. Ref. [48] also studies the vector and axial current

correlators using AdS/QCD. Only the bulk vector boson mass for the axial vector correlator

is non-vanishing, but obtaining an analytic expression for this correlator was not possible

because the bulk mass has a non-trivial profile in the bulk.

Although the comprehensive analysis of the massive vector fields in the RS2/LR mod-

els, as we have in mind here, has not been done before, some important ingredients can

be found in the literature in other contexts. The AdS/CFT correspondence for a massive

vector field is beautifully treated in [22], along with the fermion case (see also [33]) and

vector-spinor interactions. The analysis in [22] considers both the longitudinal and trans-

verse polarization and the correct CFT tensor structure is obtained. The calculations are

performed in a Euclidean setup, with the brane at the boundary of AdS. The philosophy

of the analysis is somewhat different from ours, so the contact terms are subtracted out

and unitarity not discussed. The observation that the Minkowski version of the (scalar)

brane-to-brane propagator contains an imaginary part is discussed in [49]. An important

connection is made to the process of escape of the bulk field into extra dimensions. The

imaginary part of the Minkowski propagator, or more precisely the phase of its nonanalytic

part (see later), is also noted in [32]. The contact terms also appear there (without dis-

cussion of their short-distance behavior). Finally, ref. [13], in the context of bulk fermions,

discusses the appearance of the contact terms and the improved convergence of the spectral

integral upon their subtraction.

Among the properties of the RS2 model that, to the best of our knowledge, have not

been discussed are the unitarity considerations that require the positivity of the bulk mass,

the resolution of contact terms at short distances and the position space behavior of the

correlator. These are essential for demonstrating the RS 2/LR/unparticle connection.

3 Preliminary considerations

3.1 Regulating the spectral representation

Reference [2] argues that by scale invariance the unparticle propagator in four space-time

dimensions must have the spectral representation of the form

〈O(p)O(−p)〉 ∝
∫ ∞

0
dM2 (M2)d−2

p2 − M2 + iǫ
. (3.1)

For the moment, we consider the scalar case, as the vector case will be shown to contain

additional subtleties.

longitudinal component is presented as a scalar degree of freedom but not studied. In light of our results,

particularly the unitarity bounds, some of the analysis in these models should perhaps be reexamined.

– 5 –
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The integral in eq. (3.1) converges in the interval 1 < d < 2, where it is evaluated [2]

to be

π

sin dπ
(−p2 − iǫ)d−2 =

π

sin dπ
(p2)d−2e−i(d−2)π . (3.2)

This clearly shows the right conformal behavior.4

First we explore the nature of the divergences at d = 1 and 2. As d → 1, the integral

diverges in the infrared (IR). This means that in this limit the propagator is dominated by

the lightest modes in the spectrum. Indeed, as d → 1+ the factor (−p2 − iǫ)d−2 approach

the spectral representation of a single massless particle [1]. To see this explicitly, one can

renormalize the coupling of the states by an overall factor (sin dπ)/π. Then, as d → 1+,

the M 6= 0 states decouple and one recovers the single-particle spectral representation of

a massless particle because δ(x) ∼ limǫ→0 ǫxǫ−1 [1]. The value d = 1 is known to be the

unitarity bound on the conformal dimension of a scalar. In the limit d → 2 the divergence is

instead in the ultraviolet (UV). The factor (−p2 − iǫ)d−2 in this limit becomes a constant,

which is a δ-function contact term in position space, as it should be for an interaction

dominated by ultra-heavy states.

For d > 2 the problem is that in eq. (3.1) the upper limit of integration is extended to

infinity, even though as we mentioned in the Introduction the underlying model may not

be a conformal theory above some scale Λ. An implicit assumption made in using eq. (3.1)

is that the interactions involving exchange of momentum p (p ≡
√

p2) is dictated by modes

with masses not much greater than ∼ p. This assumption works for 1 < d < 2, but breaks

down for d ≥ 2, when the contributions of the heavy states (M ≫ p) dominate the integral.

Since primary scalar operators in a CFT can have operator dimensions greater than

2, there should be a sense in which eq. (3.2) can be continued beyond the original interval

of convergence. In fact, the simplest procedure is to cut-off the integral over the spectral

function, with Λ ≫ p, which leads to a correlator that is sensitive to the physics at the

cut-off [13]. We shall see in section 5 that the RS 2 model naturally implements such

features (though the regulation is more complicated and not a rigid cutoff); ultimately it

is through softening the UV behavior of the wavefunctions of the KK states at the origin.

A way to understand the consequences of regulating the spectral integral is to begin,

instead, with the position space correlator (see also CMT [13] for an equivalent conclusion

using a different regularization method). Suppose the CFT correlation function in position

space has the form a/(x2)d + bδ(4)(x). Here, a and b are numerical coefficients and b in

particular could be divergent as the upper limit of the integration in eq. (3.1) is taken to

infinity. Upon Fourier transforming this when d is not an integer, one gets c(−p2 + iǫ)d−2 +

const. The way to drop this constant is to differentiate the propagator with respect to p2

and integrate it back. Let us apply this procedure to the integral in eq. (3.1), after first

regulating the upper limit with a cutoff. Upon differentiation we get

∂

∂p2
〈O(p)O(−p)〉 = −

∫ Λ2

0
dM2 (M2)d−2

(p2 − M2 + iǫ)2
Λ2→∞−→ −π(d − 2)

sin πd
(−p2 + iǫ)d−3. (3.3)

4The Fourier transform of eq. ( 3.2) to position space, by dimensional analysis, behaves like 1/(x2)d,

indicating that d is indeed the conformal dimension (cf. eqs. (1.3) and (1.4)).

– 6 –
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The integral now converges for 1 < d < 3 when the cutoff is sent to infinity. This means

the UV divergence of eq. (3.1) for 2 < d < 3 is indeed confined to the δ-function contact

term. Next we integrate back to get

〈O(p)O(−p)〉 =
π

sin dπ
(p2)d−2e−i(d−2)π + a0 (3.4)

with a0 depending on both the cutoff and the subtraction point (p2 = −µ2).

The next steps are obvious. Differentiating the integral twice and then integrating

back twice gets rid of contact terms of the type δ(4)(x) and ∂2δ(4)(x) (in the Fourier space,

constant and p2 terms) leaving the non-analytic contribution. The integral obtained after

the two differentiations,

2

∫ ∞

0
dM2 (M2)d−2

(p2 − M2 + iǫ)3
=

π(d − 2)(d − 3)

sin πd
(−p2 + iǫ)d−4, (3.5)

converges for 1 < d < 4.

In general, for noninteger d we then have

∫ Λ2

0
dM2 (M2)d−2

p2 − M2 + iǫ
=

π

sin dπ
(p2)d−2e−i(d−2)π (1 + · · · )

+a0 + a1p
2 + . . . + a[d−2](p

2)[d−2] + · · · , (3.6)

where [d] denotes the greatest integer less than d. The coefficients an diverge as Λ2([d]−2−n)

with the cut-off of the integral, and we have only kept terms in the series that diverge in

the limit that the cut-off is sent to infinity. (When the spectral integral is regulated with

a cutoff, subdominant non-analytic terms of order (p2)d−2+nΛ−2n are typically present.

They are however not important for any of the discussions in this paper.)

The integral therefore yields a nonanalytic part (the first term and all its subleading

terms), plus a series of contact terms. As we can see, for d > 2 the latter generically

dominate the interaction, whereas for 1 < d < 2 they do not. That is, for d > 2 the

regulated integral is not dominated by the modes with M ∼ p, but instead by the modes

living near the UV cutoff.

Note that the apparent singularities at integer dimension are resolved: they are pushed

into the contact terms, which are renormalized anyway by the counterterms [16]. However,

a non-analytic term always survives and has a finite coefficient. This can be seen by

expanding (3.6) about any integer dimension to get a logarithm as the finite correction.

Explicitly, we see that in eqs. (3.3) and (3.5). For d = 2, eq. (3.3) becomes p−2, so that

upon integrating it back over p2 we get ln p2. For d = 3 the argument is exactly the same

using eq. (3.5). Thus, the nonanalytic (CFT) part of the propagator does not disappear at

integer dimensions, but becomes a logarithm [16]. In fact, this connection will be precisely

realized when we analyze the RS 2 setup. Mathematically it occurs there because of the

properties of the expansions of the Bessel functions Yν(x), which have a branch point at

x = 0 with a log cut for integer n and a power-law cut otherwise.

One last observation is that while the CFT term has both real and imaginary parts, as

discussed in [2], the contact terms are purely real. This has transparent physical meaning:

– 7 –



J
H
E
P
0
9
(
2
0
0
9
)
0
3
3

the imaginary part indicates creation of on-shell particles in the intermediate state, as will

be discussed in detail later. Explicitly, the integral in eq. (3.1) receives an imaginary part

from the infinitesimal semicircle around the pole M2 = p2 + iǫ. In contrast, the contact

terms originate from the exchange of massive (M ≫ p) states, which cannot be produced

on-shell.

3.2 5d flat space

3.2.1 Scalar field

To begin our analysis of extra dimensional models and their connection to the spectral

representation of “unparticles”, let us consider the simplest case: a scalar field living in

flat five-dimensional space. The tree-level momentum space Green’s function is

1

p2 − p2
5 − m2

5 + iǫ
, (3.7)

where pµ ≡ (p0, p1, p2, p3), p2 ≡ pµpµ is the four-dimensional momentum invariant, p5 is

the momentum along the extra dimension, and m5 is the bulk mass of the scalar.

Now suppose there is a 4-dimensional Minkowski defect — a brane - located at x5 =

0. To find the correlation function between two points on the brane we need to Fourier

transform back to position space along the x5 direction and evaluate the result at x5 = 0.

This gives

∆flat(p2) =

∫ ∞

−∞

dp5

2π

1

p2 − m2
5 − p2

5 + iǫ
= − i

2

1
√

p2 − m2
5

. (3.8)

Curiously, observe that for m5 = 0 this integral has exactly the form of eq. (3.1) with

p5 playing the role of M . We learn that coupling sources on the brane to an otherwise

free massless scalar in a 5-dimensional flat space provides at tree level a spectral function

with d = 3/2. For a finite volume the spectral representation becomes the sum over the

Kaluza-Klein (KK) modes along the fifth dimension. For m5 6= 0 the theory has a mass

gap. In this case, for p2 ≫ m2
5 the theory is “approximately unparticles”.

This connection between the spectral representation of “unparticles” and models with

large extra dimensions has been noted before. Ref. [50] in particular compares the phase

space integral over the KK modes to the spectral integral for unparticles and, for scalars,

derives the tree-level relationship d = n/2 + 1 for a model with n extra dimensions, which

is also, not surprisingly, the engineering dimension of a scalar in D = 4 + n dimensions.

Ref. [51] also notes the connection between unparticles and fermions coupled to scalar

fields having a continuously distributed mass. Such a scenario can arise from fields living

in extra dimensions coupled to four-dimensional fermions localized at a brane in a higher-

dimensional space [52].

For us, n = 1 and hence d in the interval 1 < d < 2. As already discussed, there are

no UV divergences in this case and no resulting contact terms. In fact, we can see that in

eq. (3.8) the contributions from p5 >
√

p2 − m2
5 and p5 <

√

p2 − m2
5 cancel each other out

in the integral. Only the infinitesimal semicircle around the pole contributes, giving for
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p2 > m2
5 a purely imaginary answer and for p2 < m2

5 a purely real answer. The imaginary

part of the Green’s function points to the KK states escaping the brane [49]. For p < m5,

no states asymptotically far from the brane (z → ∞) can be excited, hence the Green’s

function is purely real. In the complex p5 plane, the propagator has a cut, corresponding

to the continuum of states with p2 > m2
5.

3.2.2 Vector field and unitarity

Now, let us consider the case of a massive vector field. The momentum space Green’s

function of the Proca equation ηMN∂MFNR + m2
5AR = 0 in flat space is

−ηMN + PMPN/m2
5

p2 − p2
5 − m2

5 + iǫ
, (3.9)

where P ≡ (pµ, p5). To find the brane-to-brane Green’s function, we again Fourier trans-

form along the x5 direction, evaluate at the location of the brane (x5 = 0), and consider

the components along the brane,

∆flat
µν (p2) =

∫ ∞

−∞

dp5

2π

−ηµν + pµpν/m
2
5

p2 − m2
5 − p2

5 + iǫ

= −
(

−ηµν + pµpν/m
2
5

) i

2

1
√

p2 − m2
5

. (3.10)

The tensor in the numerator can be decomposed as follows:

− ηµν +
pµpν

m2
5

= −ηµν +
pµpν

p2
+

pµpν

p2

p2 − m2
5

m2
5

. (3.11)

which leads to

∆flat
µν (p2) = −

(

−ηµν +
pµpν

p2

)

1

2

i
√

p2 − m2
5

− pµpν

p2

i

2m2
5

√

p2 − m2
5 (3.12)

≡
(

−ηµν +
pµpν

p2

)

∆
(T )
flat(p) − pµpν

p2
∆

(L)
flat(p) (3.13)

Seen from a brane observer, the first two terms describe a continuum of massive gauge

bosons each with 3 degrees of freedom, while the last term (the longitudinal mode in

five dimensions) appears as a continuum of scalars. In the bulk, the on-shell longitudinal

polarization vector is ǫ
(L)
A = (pµp5/p, p)/m5 which has a vanishing component along the

brane when p5 = 0, explaining why the last term vanishes when p2 = m2
5. In both cases,

the cut associated with the square root describes the continuous spectrum of Kaluza-Klein

(KK) modes coupled to the brane. The factor of i describes the production and escape of

on-shell KK modes for p > m5.

An important observation here is that for p2 > m2
5, when the longitudinal part of the

correlator is purely imaginary, the sign is controlled by the factor m−2
5 . For in order to have

a consistent picture of particle creation on the brane and escape into the extra dimensions

(cf. [49]) and not to violate unitarity, we must have

m2
5 ≥ 0. (3.14)

– 9 –



J
H
E
P
0
9
(
2
0
0
9
)
0
3
3

To see that more formally, recall that the imaginary part of the forwarding scattering

amplitude is constrained by unitarity to be non-negative. With

S = 1 + iT (3.15)

perturbative unitarity implies

Im T ≥ 0 (3.16)

in the forward scattering channel.

Now consider [16] the forward scattering amplitude of, say, ee → ee. This is given by

a sum of an s−channel and a t−channel contribution. The latter amplitude is purely real

since both the propagator (which has p2 < 0 space-like) and the current amplitudes are

purely real. It therefore does not contribute to the imaginary part of the total forward

scattering amplitude. The contribution from the s−channel is given by

T = −χout
µ ∆flat

µν χin
ν (3.17)

(the − sign is from the two factors of i appearing at the vertices) where p2 is time-like.

Also, χµ = (χ0, ~χ) are the amplitudes of the external currents in the initial and final states,

with χout
µ (p) = (χin

µ (p))∗ for forward scattering.

The external currents can be decomposed in their transverse (p · χT (p) = 0) and

longitudinal (χµ
L(p) ∝ pµ) components:

χµ(p) = χµ
T (p) + pµχL(p) (3.18)

χL(p) =
p · χ(p)

p2
(3.19)

χµ
T (p) = χµ(p) − pµ p · χ(p)

p2
(3.20)

In the center-of-mass frame χµ
L = (χ0,~0) and χµ

T = (0, ~χ) where χµ = (χ0, ~χ).

The transverse current is space-like, so its positive definite norm is χ†
T (p) · χT (p) ≡

−ηµνχ†µ
T (p)χν

T (p) ≥ 0.

Then

0 ≤ ImT = −χin†
T (p) · χin

T (p)Im∆(T )(p) + |χin
L (p)|2Im∆(L)(p) (3.21)

Noting that the transverse and longitudinal polarizations of the external currents are

positive-definite and independent, the unitarity condition Im T ≥ 0 is then equivalent

to the two conditions Im∆(T )(p) ≤ 0 and Im∆(L)(p) ≥ 0. Inspecting the brane-to-brane

vector Green’s function (3.12), this first condition is seen to be trivially satisfied for all p2.

The second condition however requires m2
5 ≥ 0 which is what we wanted to show.

As we will see, the above arguments directly generalize to curved space. In particular,

the longitudinal component will be the source of the unitarity bound in that case as well.

Eq. (3.14) will carry over unchanged and will lead to dV ≥ 3 in that case.

We close by returning to eq. (3.12) — the brane-to-brane propagator in flat space —

and consider the p ≫ m5 limit. The transverse propagator has a spectral representation

corresponding to dV = 3/2, so that from the phenomenological point of view, an experiment
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probing the extra dimensional gauge boson in this limit will observe a vector spectral

representation with dV < 3. In passing we note that in this model dV < 3 is not in conflict

with the unitarity bounds on primary, vector operators in a conformal theory [20, 53],

simply because when m2
5 6= 0 the theory is not conformal, and when m2

5 = 0 the correlator

is not gauge invariant.

3.2.3 Flat space propagator: Green’s function approach

We now outline an alternative method of obtaining the brane-to-brane propagators of the

previous Subsection.

Recall that the propagator is a Green’s function of the equation of motion. For sim-

plicity, let us consider the scalar case. Choosing to put the delta-function perturbation at

the origin and Fourier transforming along the four brane coordinates, we can write for the

Green’s function at point x5

(p2
i + ∂2

5)∆(pi, x5) − m2
5∆(pi, x5) = δ(x5). (3.22)

Everywhere outside of the origin, the Green’s function satisfies the equation of motion,

which means it is a superposition of plane waves, e−i(pixi−p5x5). The coefficients in the su-

perposition are chosen such as to satisfy the boundary condition set by the delta-function.

We take a symmetric anzatz, ∆(p4, x5) → c1e
ip5|x5|, around the brane. The physical

picture here is that the particles created by interactions on the brane radiate into extra

dimensions. Substituting this anzatz into eq. (3.22), we see that off the brane the equa-

tion is satisfied so long as p2
5 = p2

4 − m2
5. Integrating across the brane, we see that the

derivative ∂x5
∆(p4, x5) must experience a unit jump. This fixes the constant c1. We have

∂x5
∆(p4, 0+) = c1ip5e

ip50 = 1/2, or

∆(p4, 0) =
1

2ip5
=

−i

2
√

p2
4 − m2

5

. (3.23)

This is in complete agreement with eq. (3.8), confirming that the two methods are equiv-

alent. The advantage of this second method is that its generalization to the warped RS 2

background is straightforward.

4 Proca equation in the Randall-Sundrum 2 and Lykken-Randall models

We now turn to the main topic of this paper, the study of a massive vector field in the

warped RS 2 background with SM fields localized on either the UV brane or a probe brane

(LR) located in the bulk. As we shall see, unparticle-like behavior is obtained in either

scenario by coupling SM currents to the bulk vector boson.

4.1 Equations of motion

The background is a five-dimensional warped AdS space with a single 4-dimensional

brane located in the “UV”. This is the well-known RS 2 [23] background. We use the

Poincare metric

ds2 = a(z)2
(

ηµνdxµdxν − dz2
)

(4.1)
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where a = 1/(κz), κ−1 is the AdS radius of curvature and the signature is (+ − − − −).

The UV brane is located at the boundary z = κ−1 where the scale factor is normalized to

be one.

The action is
∫

d4xdz
√

g(−F 2/4 + m2
5A

2/2) +

∫

d4x
√

g4 (LSM + e0j
µ(x)Aµ(x, z = zSM )) (4.2)

When m5 6= 0, the gauge symmetry is explicitly broken and the vector field has four degrees

of freedom.5 In the AdS/CFT correspondence, the value of m5/κ controls the conformal

dimension dV of the CFT operator [22, 36]

dV = 2 +
√

1 + m2
5/κ

2 (4.3)

We shall see that this prediction remains valid in the RS 2 background, as expected from

the evidence presented in [31] that RS 2 is a good regulator of the CFT.

We will consider two models for the SM fields. In the first, the SM fields are localized

on the UV brane at z = κ−1. In the second, the the SM fields are localized on a tensionless

“probe” brane located in the bulk at z = zSM > κ−1. This is the Lykken-Randall [24]

model. The metric (4.1) is therefore valid from the boundary to the horizon at z → ∞.

The current jµ is any gauge-invariant current composed of SM fields. An example is

jµ = Q3σ
µQ2 + LσµL + · · · = tLσµcL + νσµν + lLσµlL + · · · (4.4)

This current is not conserved and therefore couples to both the transverse and longitudinal

components of the bulk vector boson. In the action above e0 is the coupling of the SM

current to the bulk vector field. If the SM fields are canonically normalized then the current

coupling (e) to the bulk vector field does not receive any warp factor suppression and is

given by

e = e0 (4.5)

The parameter e has mass dimension −1/2, so it can be written as

e =
c

M1/2
(4.6)

for some mass scale M and dimensionless constant c. Physically M represents the scale at

which the interaction between the SM current and the bulk vector field is generated. This

could for instance occur on the order of the (inverse) thickness of the brane.

In the following analysis it will be important to include all four polarizations, especially

the longitudinal component (which is often neglected in the literature). First a practical

reason: the SM current may not be conserved (which is true for the example above), in

which case the longitudinal component does not decouple from the brane. Next, the longi-

tudinal and transverse components make comparable contributions to the tensor structure

of the CFT; without the longitudinal component one gets the incorrect tensor structure.

5Alternatively, it is possible to Higgs the theory by introducing scalar field with a VEV. For our purposes,

writing an explicit mass term is sufficient.

– 12 –



J
H
E
P
0
9
(
2
0
0
9
)
0
3
3

But most significantly, the unitarity bound on the dimension of the vector operator in the

CFT follows from considering the longitudinal part of the propagator.

The equations of motion are

∂νFνµ + a−1∂z(aFµ5) + m2
5a

2Aµ = −eajµδ(z − zSM ) (4.7)

and

�A5 − ∂z∂ · A + a2m2
5A5 = 0 (4.8)

Here � ≡ ∂µ∂µ is the Minkowski-space Laplacian with respect to the global four-

dimensional coordinates xµ and ∂ ·A ≡ ηµν∂µAν . It will also be useful to Fourier transform

functions of xµ to the momentum space coordinate pµ that is the conserved momenta as-

sociated with the translation symmetry xµ → xµ + cµ. It is also the momenta observed by

a four-dimensional observer.

As already mentioned, when m5 6= 0, Aµ has four polarization states. Three of these

are transverse, defined by pµA
(T )
µ = 0. The remaining one has p · A 6= 0 and is related to

A5 by projecting the bulk equation of motion (4.7) onto its longitudinal component and

then subtracting (4.8) to obtain (away from the brane)

− ip · A = a−3∂z(a
3A5). (4.9)

This equation is the curved space generalization of the transversality condition p ·A = p5A5

for the solutions of the Proca equation in flat space.

The analysis is therefore simplified if the components of the Green’s function along the

brane directions are decomposed into its transverse and longitudinal components as follows,

∆µν(p, z) ≡
(

−ηµν +
pµpν

p2

)

∆(T )(p, z) − pµpν

p2
∆(L)(p, z) (4.10)

with

〈T (Aµ(x, z)Aν(y, z′))〉 ≡ i∆µν(x − y, z) (4.11)

and where the dependence of the propagator on the location z′ of the source in the bulk

is left implicit. The brane-to-brane propagator is obtained after the fact by setting z = z′.

With this definition of ∆µν the analysis of perturbative unitarity is straightforward, simply

because i∆µν is the Feynman propagator. This is also the definition we implicitly used in

section 3.2.2. Then with this definition

Aµ(p, z) = −e∆µν(p, z)jν(p) (4.12)

so the Green’s function is −∆µν , which is the standard (−) sign relating Green’s functions

and Feynman propagators (with the factor of i omitted). With this decomposition the

equations for ∆(T )(p, z) and ∆(L)(p, z) are decoupled.

From (4.12) one then has the following relations which are useful for translating bound-

ary conditions on Aµ into boundary conditions on ∆(T ) and ∆(L),

A(T )
µ (p, z) = e∆(T )(p, z)j(T )

µ (p) (4.13)

−ip · A(p, z) = ∆(L)(p, z)(−iep · j(p)) (4.14)
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It is convenient to define the 55 propagator ∆5 through

A5(p, z) ≡ ∆5(p, z)(−iep · j(p)) (4.15)

There are several ways to proceed.

From eq. (4.7) one obtains an equation for the transverse component,

�A(T )
µ − a−1∂z(a∂zA

(T )
µ ) + m2

5a
2A(T )

µ = −aejT
µ δ(z − zSM) (4.16)

which in terms of ∆(T ) is simply

− p2∆(T ) − a−1∂z(a∂z∆
(T )) + m2

5a
2∆(T ) = −aδ(z − zSM ) (4.17)

This equation will be solved in section (5.1) for RS 2 and section (6.1) for LR using the

boundary conditions obtained in section (4.2).

For the longitudinal mode one has from (4.7) and (4.8)

∂ · A = a−3∂z(a
3A5) −

1

am2
5

e∂ · jδ(z − zSM ) (4.18)

In the bulk this relation becomes

∆(L) = a−3∂z(a
3∆5) (4.19)

The A5 equation (4.8) is equivalent to

− p2∆5 − ∂z∆
(L) + a2m2

5∆5 = 0 (4.20)

No source appears in this equation because the brane current does not couple to A5. In

sections (5.2) (RS 2) and (6.2) (LR) the solution for the longitudinal component will be

obtained by solving these latter two equations in the bulk and applying the boundary

conditions discussed in section (4.2).

Finally, we mention an equivalent method for solving these equations. One can use

eq. (4.20) to solve for ∆5 and substitute it back into eq. (4.7), to obtain an equation for

∆(T ) and ∆(L) only,

(p2ηµν − pµpν)∆
µρ + ∂y

(

a2

[

ηµν − pµpν

p2 − m2
5a

2

]

∂y∆
µρ

)

− m2
5a

2∆ρ
ν = −δ(y)δρ

ν , (4.21)

(Note: this equation is in the “RS” coordinate system: a = e−κy with dy/dz = a). This is

the equation presented in our previous work [27].

4.2 Boundary conditions

The boundary conditions for the fields at both the UV boundary and the SM brane (where

the source is located) are obtained from the variational principle. That is, surface terms

obtained by varying the bulk action are cancelled by contributions arising from the variation

of the interactions on the brane.
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To determine the propagator, we need to impose an additional boundary condition at

large z, which we choose to be the radiative boundary condition following [30, 49, 54, 55].

This condition can be justified from several points of view. As pointed out in [30], the

radiative boundary condition is analogous to the Hartle-Hawking boundary condition in

gravity, with positive frequency waves going towards the horizon z = ∞. Ref. [49] stressed

that this physically means escape of particles from the brane into the bulk. In the unparticle

picture, this means the SM model particles can (irreversibly) decay into unparticles. This

boundary condition is also the one that leads to a finite action when rotated to Euclidean

space [36].

We divide this discussion into two parts depending on whether the source is on the

UV brane (RS 2) or on a brane at z = zSM > κ−1 (LR).

4.2.1 Source on UV brane

The surface term obtained by varying the action consists of a term from the bulk action

and the contribution from the brane current:

(∂µA5 − ∂zAµ + aejµ) δAµ|z=κ−1 = 0 (4.22)

Next we project onto the transverse and longitudinal components and use δAµ 6= 0.

For the transverse mode the boundary condition is simply

∂z∆
(T )|z=κ−1 =

a

2
(4.23)

(The factor of 1/2 is an arbitrary normalization of the current, and a = 1 on the UV brane.)

Projecting (4.22) onto the longitudinal component gives

∂µFµ5|z=κ−1 = −ea∂ · j (4.24)

Substituting the equation of motion (4.8) to eliminate ∂µFµ5 gives

A5|z=κ−1 =
1

am2
5

e∂ · j =
1

am2
5

(−iep · j(p)) (4.25)

Thus

∆5|z=κ−1 =
1

2am2
5

(4.26)

4.2.2 Source on LR brane

Here the boundary conditions on the UV brane follow directly from the preceding discus-

sion, setting the source to zero:

∂z∆
(T )|z=κ−1 = 0 (4.27)

∆5|z=κ−1 = 0 (4.28)

At the LR brane we have to allow for “jumps” or discontinuities in the fields or their

derivatives across the brane. The above boundary condition (4.22) is modified at the LR

brane to
(

[∂µA5 − ∂zAµ]± + eaSM jµ

)

δAµ|z=zSM
= 0 (4.29)
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where [X]± ≡ X|z→z+

SM

− X|z→z−
SM

denotes the difference of X across the SM brane.

On the brane δAµ 6= 0 and is Aµ is chosen to be continuous across the brane since it

couples to a source. Therefore

[∆µν ]± = 0 (4.30)

For the transverse modes one obtains from (4.29) and (4.30) simply

[∂z∆
(T )]± = aSM , [∆(T )]± = 0 (4.31)

For the longitudinal mode one first projects (4.29) onto the longitudinal component δA
(L)
µ

to find [∂µFµ5]± = −eaSM∂ · j, or

[p2∆5 + ∂z∆
(L)]± = aSM (4.32)

Using eq. (4.8), this boundary condition is the same as

[∆5]± =
1

aSMm2
5

(4.33)

To obtain a condition for ∂z∆5, note that the bulk equation −ip · A = a−3∂z(a
3A5)

together with the continuity of ∆(L) implies [∂z(a
3A5)]± = 0, giving finally

[∂z∆5]± = − 3

aSM
[(∂za)∆5]± (4.34)

= 3aSM [∆5]± =
3

m2
5

(4.35)

In stepping from (4.34) to (4.35) ∂za was assumed to be continuous across the brane. This

assumption is true for the LR brane, but not for the UV brane; eq. (4.35) therefore does

not apply to it. Evidently the presence of the source leads to a discontinuity in both ∆5

and its derivative.

We have now obtained enough boundary conditions to uniquely solve for the transverse

and longitudinal propagators. To recap, in the LR model the longitudinal and transverse

propagators are solved for in the region between the UV brane and LR brane, and in the

region between the LR brane and the horizon. For each propagator there will be a priori

four integration parameters; two of these are fixed by the boundary condition at the UV

brane and the outgoing wave condition at the horizon. The remaining two parameters are

fixed by matching the solutions across the boundary at the LR brane using eqs. (4.33)

and (4.35).

Equivalently, these boundary conditions can be obtained by matching singularities in

the bulk equations of motion (4.16), (4.8) and (4.18) with the source term on the brane.

For the transverse mode this equivalence is obtained rather easily. For the longitudinal

mode one substitutes ∂ · A from (4.18) into (4.8), expands

A5(p, z) = A
(2)
5 (p, z)θ(z − zSM ) + A

(1)
5 (p, z)θ(zSM − z) (4.36)

and matches the discontinuities appearing in the equations of motion to the discontinuities

(δ(z − zSM ) and ∂zδ(z − zSM )) appearing from the sources.
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5 Randall-Sundrum 2

Having laid the groundwork, we now turn to the main goal of this paper, the analysis of

the connection between the RS2 and LR models and the unparticle physics scenario. In

this section, we treat the RS 2 model. The LR model is treated below, in section 6.

5.1 Transverse polarization

The equation for the transverse propagator obtained from (4.16) and (4.17) is

− ∂2
z∆(T )(p, z) + a∂z∆

(T )(p, z) + m2
5a

2∆(T )(p, z) − p2∆(T )(p, z) = −aδ(z − κ−1). (5.1)

The general solution of this equation in the bulk is

∆(T )(p, z) = cT (p)z [Jν(pz) + dT (p)Yν(pz)] , (5.2)

where p ≡
√

p2 and

ν ≡ ±
√

1 + m2
5/κ

2. (5.3)

For m2
5/κ

2 ≥ −1 both roots for ν are purely real. However, using the properties of the

Bessel functions the solutions for ν < 0 can be expressed in terms of solutions having

positive ν argument. For m2
5/κ

2 ≤ −1 both roots for ν are purely imaginary, but the

solutions with negative and purely imaginary ν can be mapped to those solutions with

positive and purely imaginary ν. Therefore, without any loss of generality we either have ν

purely real positive or purely imaginary positive. As we shall see, the positivity of the real

ν solutions automatically restricts us to CFT vector operators having dimension dV ≥ 2.

All solutions with purely imaginary ν will be seen to violate unitarity and are therefore

excluded (for a discussion of unitarity see section 5.4.4). Moreover, in order that the real

ν solutions satisfy unitarity will further require ν ≥ 1, or dV ≥ 3.

The Green’s function satisfying the radiative condition at large z therefore has the form

∆(T )(p, z) = cT (p)zH(1)
ν (pz) (5.4)

The second boundary condition is imposed at the location of the brane, where the source

is located. From the boundary condition (4.23) the derivative of the transverse propagator

at the location of the UV brane is ∂z∆
(T )|z=κ−1 = 1/2. We can now fix cT (p):

∂z∆
(T )(p, z) = cT (p)

[

pzH
(1)
ν−1(pz) − (ν − 1)H(1)

ν (pz)
]

, (5.5)

→ cT (p) =
1

2

[

pH
(1)
ν−1(p/κ) − (ν − 1)κH(1)

ν (p/κ)
]−1

(5.6)

eqs. (5.4) and (5.6) define the brane-to-bulk propagator. The brane-to-brane transverse

propagator (z = κ−1) is

∆(T )(p, z = κ−1) =
1

2

[

pH
(1)
ν−1(p/κ)/H(1)

ν (p/κ) − (ν − 1)κ
]−1

. (5.7)
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5.2 Longitudinal polarization

As a warm-up, let’s first consider flat space. In the bulk the solution having the outgoing

wave boundary condition is simply

∆flat
5 (p, z) = cflat

5 eip5z (5.8)

where p5 =
√

p2 − m2
5. The boundary condition (4.33) at z = 0 implies cflat

5 = 1/(2m2
5), so

∆flat
5 (p, z) =

1

2m2
5

eip5z (5.9)

Next, we obtain ∆
(L)
flat from the flat space version of (4.19),

∆
(L)
flat(p, z) = ∂z∆

flat
5 (p, z) =

ip5

2m2
5

eip5z (5.10)

so that the longitudinal brane-to-brane propagator is

∆
(L)
flat(p, 0) =

ip5

2m2
5

=
i

2m2
5

√

p2 − m2
5 (5.11)

which is precisely (3.12) and (3.13).

Now, let us repeat the same steps for the RS 2 background. Away from the brane

eqs. (4.19) and (4.20) combine to give

∂2
z∆5(p, z) − 3z−1∂z∆5(p, z) +

[

3z−2 − m2
5κ

−2z−2 + p2
]

∆5(p, z) = 0 (5.12)

The general solution of this equation is

∆5(p, z) = c5(p)z2 [Jν(pz) + d5(p)Yν(pz)] (5.13)

with ν as before (5.3) and again, without loss of generality we have either ν ≥ 0 and purely

real, or ν = iν̃ with ν̃ ≥ 0. But as with the transverse mode solutions, these solutions

having purely imaginary ν will be seen to violate unitarity (see section 5.4.4).

Again, we choose the radiative boundary condition at z → ∞, combining the Bessels

into the Hankel function H
(1)
ν ,

∆5(p, z) = c5(p)z2H(1)
ν (pz) (5.14)

The second boundary condition comes from (4.26) and is

∆5|z=κ−1 =
1

2

1

m2
5

(5.15)

This gives

∆5(p, z) =
κ2

2m2
5

z2 H
(1)
ν (pz)

H
(1)
ν (p/κ)

(5.16)
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Finally, returning to eq. (4.18), away from the brane we obtain

∆(L)(p, z) = a−3∂z

(

a3∆5(p, z)
)

=
κ2

2m2
5

z
H

(1)
ν (pz)

H
(1)
ν (p/κ)

[

pzH
(1)
ν−1(pz)/H(1)

ν (pz) − (ν + 1)
]

(5.17)

The brane-to-brane Green’s function follows from this, since ∆(L) is continuous there,

∆(L)(p, z = κ−1) =
1

2m2
5

[

p
H

(1)
ν−1(p/κ)

H
(1)
ν (p/κ)

− κ(ν + 1)

]

. (5.18)

5.3 Green’s function: summary

The RS 2 brane-to-brane propagator for p2 > 0 is

∆µν(p) =

(

−ηµν +
pµpν

p2

)

∆(T )(p) − pµpν

p2
∆(L)(p) (5.19)

where the transverse and longitudinal propagators are

∆(T )(p) =
1

2

[

p
H

(1)
ν−1(p/κ)

H
(1)
ν (p/κ)

− κ(ν − 1)

]−1

, (5.20)

∆(L)(p) =
1

2m2
5

[

p
H

(1)
ν−1(p/κ)

H
(1)
ν (p/κ)

− κ(ν + 1)

]

. (5.21)

The order appearing in these solutions is

ν =
√

1 + m2
5/κ

2, (5.22)

which without loss of generality, is either purely real and positive for m2
5/κ

2 ≥ −1 or purely

imaginary and positive for m2
5/κ

2 ≤ −1. Only those solutions with m2
5 ≥ 0 will be seen to

satisfy unitarity; all others will violate it (see section 5.4.4).

5.4 Analysis

Following Georgi, GIR model unparticles using the Banks-Zaks model which is a pertur-

bative CFT [26]. The Banks-Zaks model is a SU(Nc) gauge theory with NF flavors of

quarks, where the number of colors and flavors is large. By choosing NF /Nc appropriately,

the one-loop beta-function β(g) = −ηNcg
3/16π2 is arranged to be small (η ≪ 1), but

still asymptotically-free. As the coefficient of the two-loop beta-function is positive, the

beta function can vanish to this order with an appropriate choice of the ’t Hooft coupling.

Importantly, Banks and Zaks further show that the beta-function can be made to vanish

to all orders of perturbation theory, with a ’t Hooft coupling that can be made arbitrarily

small at the fixed point.

In the microscopic theory GIR couple a SM current directly to a (gauge-invariant)

current formed from the Banks-Zaks quarks. Assuming the Banks-Zaks theory flows into its
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fixed point, such interactions then lead at low-energy to the unparticle coupling (1.1). GIR

then found that quantum corrections involving the Banks-Zaks quarks generate dimension 8

and higher contact interactions involving just SM fields. These contact interactions cannot

be neglected since they are suppressed by the same scale suppressing the SM current -

BZ current interaction. In fact, as GIR note, in SM-SM plane wave scattering amplitudes

these contact interactions dominate over the purely CFT contribution.

The SM current-current couplings arise from inserting the Banks-Zaks quarks into a

loop. By inspection, the O(p2) contribution (i.e, dimension 8 operator) is logarithmically

divergent, which means that it is present in any regularization scheme. Therefore SM

contact interactions are necessarily present, either initially at the UV boundary or by RGE

operator mixing [16]. Since the Banks-Zaks coupling is perturbative, this microscopic

analysis is valid and this loop is the leading effect.

Does this conclusion, obtained at weak ’t Hooft coupling, generalizes to strong cou-

pling? Two reasons suggest that it does. From effective field theory we do expect SM-SM

contact interactions mediated by the new physics, simply because any messengers that

generate the interactions between the SM and the CFT will also generate SM-SM interac-

tions. Moreover, the need to regulate the spectral representation for operators of dimension

dV > 2 also suggests that contact interactions are required. We now turn to this and other

questions in the RS2 model, using the propagators previously derived.

5.4.1 Contact interactions, tensor structure, phase and particle escape

To begin, consider the limit where the momenta are much smaller than the AdS curvature,

p ≪ κ. Note that the Green’s function, eq. (5.19), does not have the structure expected

for a conformal theory, eq. (1.4). Thus, our first task is to extract the CFT part from the

full RS 2 propagator.

We first evaluate the longitudinal Green’s function, given in eq. (5.18). Expanding in

powers of (p/κ) gives for p2 ≪ m2
5

∆(L)(p, z = κ−1) ≃ κ

2m2
5

[

−(1 + ν) +
(p/κ)2

2(ν − 1)
+

(p/κ)4

8(ν − 1)2(ν − 2)

+
(p/κ)6

16(ν − 1)3(ν − 2)(ν − 3)
+

(5ν − 11)(p/κ)8

128(ν − 1)4(ν − 2)2(ν − 3)(ν − 4)

+
(−19 + 7ν)(p/κ)10

256(ν − 5)(ν − 4)(ν − 3)(ν − 2)2(ν − 1)5
+ · · ·

+
2π

Γ(ν)2
(i − cot πν)

( p

2κ

)2ν
[1 + · · · ]

]

. (5.23)

The ellipses denote terms higher order in (p/κ)2.

First, we note that in performing this expansion we assume that ν > 1 and is purely

real. The case of when ν = 1 requires some care and is dealt with in section 5.5.6. And

in section 5.4.4 it will be shown that all solutions having ν purely imaginary or 0 ≤ ν < 1

violate unitarity, so the restriction to ν ≥ 1 (i.e., m2
5 ≥ 0) is justified (for D = 4 space-time

dimensions on the brane; see section 5.6 for the generalization to general D).
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Next notice that this expansion has the form of eq. (3.6). Hence the discussion of

section 3.1 applies here: the terms with integer powers of p2 have the form of contact

interactions, while the nonanalytic term p2ν represents the contribution of a CFT vector

operator having dimension dV = 2 + ν. The analytic terms are the contact interactions

between the currents found by [16]. Physically, the conformal symmetry is broken in the

UV by the presence of the brane and the contact interactions are the result of that breaking.

The expansion of the transverse propagator for (p/κ)2 ≪ (ν − 1)2 is

∆(T )(p, z = κ−1) ≃ 1

2κ

[

− 1

(ν − 1)
− 1

2(ν − 1)3

( p

κ

)2
− 3ν − 5

8(ν − 2)(ν − 1)5

( p

κ

)4
+ · · ·

− 2π

(ν − 1)2Γ[ν]2
(i − cot πν)

( p

2κ

)2ν
[1 + · · · ]

]

(5.24)

The preceding discussion on the physical content of the expansion in eq. (5.23) applies here

as well: we see the dominant contact terms and subleading CFT piece.

In the by now standard computation [22, 35, 36] (see also [56]) these contact terms

are subtracted from the CFT two-point correlator. The principle behind this is conformal

symmetry: the dual CFT gauge theory is conformally invariant. In contrast to this, in

the RS 2 (and also the LR) scenario the location of the UV brane (and probe brane)

is fixed, breaking the symmetry. The four-dimensional dual theory is not conformally

invariant: it has both a cutoff and gravity, both of which explicitly break the conformal

symmetry [29, 31]. Moreover, in the dual description of the LR model the conformal

field theory in the UV breaks to the SM and another conformal field theory at a fixed

scale Λ = z−1
SM in the IR [31]. In RS 2 (and as we shall see, in LR) the contact terms are

therefore physical, and generically non-zero. To cancel them requires a fine-tuning between

these contributions from the bulk and additional new contributions from interactions on

the brane. In short, in the RS 2 and (minimal) LR models the coefficients of the contact

interactions are fixed, but in a more general UV completion these coefficients are sensitive

to the physics above the (local) curvature scale [13].

Next we turn to the tensor structure of the CFT contribution to the propagator. Using

both expansions of the propagator, we can combine the leading non-analytic terms. After

some algebra, and remembering that m2
5 = κ2(ν2 − 1), we get

π

κ(ν − 1)2Γ[ν]2
(−i + cot πν)

(

−ηµν +
2ν

ν + 1

pµpν

p2

)

( p

2κ

)2ν
(5.25)

With the identification dV = 2 + ν, this equation has the correct tensor structure and

scaling to describe the two-point function of a CFT vector operator of dimension dV , in

complete agreement with [16].

As discussed in section 3.1, the contact terms should be real, while the CFT piece

can have a phase. Eq. (5.23) explicitly confirms this. Moreover, given that i − cot πν =

− exp(−iπν)/ sin πν = − exp(−iπ(dV − 2))/ sin πdV , we see that the nonanalytic term has

exactly the phase discussed by Georgi in [2], as well as the poles at integer dV . The Bessel

functions automatically know about these properties. The RS 2 scenario gives a very clear

physical meaning to the imaginary part of this phase: it is related to the rate of decay into

extra dimensions (cf. [49]).

– 21 –



J
H
E
P
0
9
(
2
0
0
9
)
0
3
3

We end with a final comment on a subtlety of the phase appearing in the non-analytical

piece. At integer dimension

dV the phase of the non-analytic terms vanish: exp[−iπ(dV − 2)] → 1. Physically,

however, the imaginary part of the correlator is non-vanishing, since the produced bulk

KK mode still escapes from the brane, independent of whether or not dV is an integer.

Indeed, by inspection of eq. (5.25) the imaginary part is seen to be regular for integer

dimension dV ≥ 3.6 Thus the imaginary part of the correlator is always present.

5.4.2 Phenomenological implications

Let us elaborate on this last point a little further. The rate for this production can be

computed using the optical theorem and the imaginary part of the forward scattering

amplitude obtained from the vector boson propagator,

σ(f1f2 → escape) =
1

s
ImA(f1f2 → f1f2) ≃

e2

κ

( p

κ

)2ν
(5.26)

(recall that e denotes the SM current - bulk vector field coupling and it has mass dimension

−1/2.) For plane wave scattering on the brane this process describes the continual pro-

duction of an outgoing flux of plane waves of the right mass, moving away from the brane.

For scattering of SM wavepackets, this cross-section gives the rate for the production of a

bulk coherent state, which then escapes into the bulk. Once escaped, the bulk particles

fall into the horizon and never re-interact with the fields on the brane.

The purely CFT effects also contribute to SM-SM scattering, but as noted above and

previously discussed by [16] and [13], they are generically subleading. The contribution of

the leading contact interaction to the cross-section for SM-SM scattering f1f2 → f3f4 at

energies s ≪ κ2 is

σ(f1f2 → f3f4) ≃ e4 s

κ2
(5.27)

The leading CFT contribution to this process comes from its interference with the

contact interaction and is easily seen to be subdominant,

σ

(

f1f2
CFT−→ f3f4

)

σ

(

f1f2
contact−→ f3f4

) ≃
( p

κ

)2ν
≪ 1 (5.28)

where the last equality uses the unitarity constraint ν ≥ 1 and assumes p ≪ κ. We then

find that for vector operators, the contact operators appear to always dominate plane wave

scattering amplitudes.

The situation for vector bosons therefore differs from the case of bulk scalars or bulk

fermions propagating on this background. There the CFT contributions can dominate the

scattering amplitude if the dimension of the CFT operator is not too big [13]. Specifically,

6The case dV = 3 (or ν = 1) requires some care since the Taylor expansions (5.23) and (5.24) do

not apply. But an imaginary part of the correlator is also present in this case - the reader is referred to

eqs. (5.39), (5.40), (5.44) and the more general discussion found in section 5.4.4.
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for scalar or fermionic operators in the CFT ref. [13] finds that the CFT part dominates if

dS < 2 or dF < 5/2.

Next we notice that the escape process dominates over the interference process:

σ(f1f2
CFT−→ f3f4)

σ(f1f2 → escape)
≃ e2κ

s

κ2
(5.29)

This result suggests that the best opportunity to discover unparticle-like behavior is not in

SM-SM scattering processes [16], but either in direct production such as t → c+nothing [1],

or associated production.

We note however that for the former process to be dominated by the CFT behavior

it is necessary that the SM current coupling to the CFT not include neutrinos. For if it

does, the contact interactions mediated by the vector unparticles will then contribute to

the same process, giving a background that dominates in rate over the direct production

of unparticles.

Associated production [1]

q + q̄ → gluon + unparticle , gluon + gluon → gluon + unparticle (5.30)

may be a promising channel in which to search for unparticle-like behavior, since the

vector unparticle mediated contact interactions do not contribute. In the detector this

event appears as a monojet. Since large extra dimensions [57] also produce monojets [58],

it would be useful to investigate whether the pT distribution of the monojet is a useful

discriminator.

5.4.3 Cancellation of divergence in CFT correlator at integer dimension

Several authors have noted that the coefficient of the CFT propagator in momentum space

diverges at integer dimension. By inspection, the coefficient is proportional to cot πν

which indeed diverges. As noted by [16], the contact interactions are necessary to resolve

this divergence.

To see this explicitly, first note by inspection of the explicit expression for the local

terms in eqs. (5.23) and (5.24) that the coefficients of the local terms also diverge when

ν is an integer. These divergences indeed cancel the divergences that appear at integer

dimension in the CFT contribution to the correlation. What happens term by term as

ν → n is that the divergence in real part of the non-analytic term is cancelled by the

divergence in the local term of O(p2n). (The cancellation for ν → 1 requires more care; see

section 5.5.6.) We have explicitly checked this for several of the terms in eq. (5.23).

For example, consider from (5.23) the O(p10) analytic term in the longitudinal propa-

gator, as ν → 5. One has

lim
ν→5

(−19 + 7ν)(p/κ)10

256(ν − 5)(ν − 4)(ν − 3)(ν − 2)2(ν − 1)5
=

(p/κ)10

294912

(

1

ν − 5
− 143

48

)

(5.31)
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On the other hand, in this limit the leading non-analytic term becomes

lim
ν→5

[

2π

Γ(ν)2
(i − cot πν)

( p

2κ

)2ν
]

= − 1

294912

(p/κ)10

ν − 5
+

1

294912

(

iπ − 2 log[p/2κ] − 2γE +
25

6

)

(p/κ)10 (5.32)

Explicitly one sees that the pole at ν = 5 cancels between the analytic and non-analytic

terms. Next note that the appearance of the finite part is consistent with what we expect.

First, there is an imaginary part which, as we shall see in section 5.4.4, has the correct

sign required by unitarity. Physically, it corresponds to the production of KK particles

which escape from the brane. Next, the leading order non-analytic term is log p which has

a branch cut. This result confirms the findings of [16] in the weakly coupled Banks-Zaks

theory that a log p appears at integer vector operator dimension.

The reason for this cancellation is that from the AdS side, the dimension of the operator

is determined by the value of the five-dimensional gauge boson mass and there is nothing

special about values of m2
5 that correspond to integer operator dimension. In fact, the

Green’s function is expected to be regular in m2
5, which is confirmed by the explicit solution.

Specifically, we see that the solution is given by Hankel functions of order ν and ν − 1,

which are entire functions of their order. The series of contact terms provided by the AdS

computation are seen, from the CFT side, to be necessary in order that physical predictions

are smooth functions of the operator dimension.

Another reason to see that contact interactions might be relevant to fixing this problem

is the following. The position space correlator does not diverge at integer dimension (the

explicit formula can be found in eq. (1.3) or section 5.5. But the only difference between

the position space correlator and the Fourier transform of the momentum space CFT

propagator (i.e., non-analytic terms) are terms that vanish faster than x−2dV . Examples

include terms that in momentum space are precisely contact interactions or a series of

contact terms that sum up to have a finite range. In other words, the divergence that

appears at integer dimension in the momentum space representation can be regulated by

terms local in momentum, without affecting the correlator at large distances.

5.4.4 Unitarity

In a pure CFT the dimensions of operators are constrained by unitarity, as shown by

Mack [20], Minwalla [53] and more recently by Grinstein, Intriligator, and Rothstein [16].

Since scattering amplitudes do not exist in a pure CFT because there are no asymptotic

states, bounds are obtained either by acting the (super)conformal algebra on states [20, 53]

or by using the state operator correspondence and manipulating correlation functions [16].

Another physical approach to obtain these bounds is to couple the CFT operators to weakly

interacting particles (such as Standard Model particles) through an irrelevant operator [16].

The CFT operators contribute to the forward scattering of SM particles and their physical

properties can therefore be constrained by requiring that perturbative unitarity be satisfied.

This constraint leads to the same bounds on the dimensions of the CFT operators [16].
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Let’s see how this works in the RS 2 model. We will find that a necessary and sufficient

condition for the brane-to-brane forward scattering amplitude due to an intermediate bulk

vector boson to preserve unitarity is given by

m2
5 ≥ 0 (5.33)

Note that this bound is non-trivial, since a negative mass squared is allowed for scalars

propagating in AdS space [59]. Using this result, AdS-CFT predicts dV ≥ 3, which is the

correct bound on the dimension of primary, gauge invariant operators in 4 dimensions.

To begin, we momentarily restrict ourselves to ν real (and, without loss of generality

non-negative). As described in section 3.2.1 in the flat space example, following [16], the

forward scattering amplitude for ff → ff is given by a sum of an s−channel and a

t−channel contribution. The t−channel amplitude does not contribute to the imaginary

part of the amplitude since it is purely real because: i) it requires p2 < 0 space-like and is

therefore given by the Euclidean brane-to-brane Green’s functions, eqs. (5.52) and (5.53)

which are purely real; and ii) the current amplitudes are purely real for forward scattering.

Next consider the t−channel amplitude when ν is purely imaginary. Here one has to

analytically continue the brane-to-brane Green’s functions to complex ν, and make use of

the properties of Bessel functions when their orders are complex [60]. After doing that, it

turns out that the t−channel exchange amplitude is also purely real.

It remains to consider the s−channel amplitude which is given by

T = −χout
µ ∆µνχin

ν (5.34)

(as in section 3.2.1, the − sign is from the two factors of i appearing at the vertices and

∆µν is the brane-to-brane vector boson Green’s function obtained in the previous sections).

Also, χout
µ = χin∗

µ .

Recall that the unitarity condition Im T ≥ 0 is equivalent to the two conditions

Im∆(T )(p) ≤ 0 and Im∆(L)(p) ≥ 0. To write the brane-to-brane Green’s functions in a

more convenient form the following identity is useful,

x
d

dx
log H(1)

ν (x) = x
H

(1)
ν−1(x)

H
(1)
ν (x)

− ν (5.35)

Then

∆(T )(p) =
1

2

[

p
d

dx
log H(1)

ν (x) + κ

]−1

(5.36)

∆(L)(p) =
1

2m2
5

[

p
d

dx
log H(1)

ν (x) − κ

]

(5.37)

with x ≡
√

p2/κ ≥ 0. We note that since the Bessel functions are entire functions of their

order [61], these formulae are also valid for ν purely complex (i.e., m2
5 < −κ2).

The imaginary part of these Green’s functions comes from the phase of the Hankel

function, which for any ν is

φ(ν, x) = Im log H(1)
ν (x) (5.38)
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In terms of these variables one finds

0 ≥ Im∆(T )(p) = − pφ′/2
(

p d
dxRe log H

(1)
ν (x) + κ

)2
+ (pφ′)2

(5.39)

0 ≤ Im∆(L)(p) =
pφ′

2m2
5

(5.40)

where φ′ ≡ ∂φ(ν, x)/∂x . These results are completely general, since we have allowed for

m2
5 to be positive or negative (i.e, ν purely real or purely imaginary).

The desired bound is obtained from looking at the ratio of these two imaginary parts.

Unitarity requires that the ratio have a fixed sign, which by inspection is

0 ≥ Im∆(T )(p)

Im∆(L)(p)
= − m2

5
(

p d
dxRe log H

(1)
ν (x) + κ

)2
+ (pφ′)2

(5.41)

Since the denominator of the right-side is positive, this condition implies

m2
5 ≥ 0 (5.42)

Note that this result automatically implies solutions having ν purely imaginary violate

unitarity, for they all have m2
5 < −κ2 < 0.

It remains to check that the positivity of the mass squared it is sufficient. Now the first

condition requires φ′ > 0 which seems non-trivial. But it turns out that this condition is

automatically satisfied. Since for m2
5 ≥ 0 the order ν is purely real, an explicit expression

for the phase is easily obtained. It is

φ(ν, x) = arctan
Yν(x)

Jν(x)
(5.43)

Then using the Wronskian W [Jν , Yν ] = JνY
′
ν − J ′

νYν = 2/(πx) of the two Bessel functions,

one obtains after some algebra

φ′ =
2

π

1

x

1

J2
ν (x) + Y 2

ν (x)
≥ 0 (5.44)

which is always positive definite. This result, combined with the above observation on the

ratio of the transverse to longitudinal modes establishes that (5.42) is the necessary and

sufficient unitarity bound on the vector boson mass.

In passing we reiterate the importance of the longitudinal component in obtaining this

bound. For had only the transverse Green’s function been considered, one would have

found the weaker condition

m2
5 ≥ −κ2 (5.45)

This condition is reminiscent of the necessary stability bound on a bulk scalar of mass

mφ : m2
φ ≥ −4κ2 [59].
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Using the AdS-CFT identification dV = 2+
√

1 + m2
5/κ

2 (which we have seen remains

the same in RS 2), the bound (5.42) is seen to be equivalent to dV ≥ 3 (i.e., ν ≥ 1), which

is the same as the unitarity constraint on the dimension of (primary) vector operators in a

CFT. That this bound comes from the longitudinal part of the Green’s function is consistent

with the fact that the bound on the CFT operator comes from requiring positivity of the

second descendent operator 〈∂µOµ(x)∂νOν(0)〉 [16]. We also note that the bound (5.42)

implies that at large distances x, the position-space correlator must fall at least as fast as

x−6 (see eqs. (5.66) and (5.67)). This last statement makes no reference to AdS-CFT.

Thus the brane-to-brane scattering amplitude satisfies the unitarity condition for all

values of p if and only if ν is purely real and ≥ 1. That this condition is the same as

for a vector operator in a CFT might be at first surprising. Indeed, the brane-to-brane

propagator is dominated by the contact interactions. However, the local terms do not

have a cut (and therefore no imaginary part). In the four-dimensional interpretation this

is understandable since they are generated by virtual degrees of freedom having mass

M ≫ p. On the other hand, the CFT contribution does have a cut and an imaginary part,

so only it contributes to the imaginary part of the scattering amplitude. Physically, the

imaginary part arises because in four dimensions the SM currents excite CFT states at all

momentum scales. The CFT therefore provides the imaginary part of the amplitude.

Note that the condition m2
5 ≥ 0 (or dV ≥ 3) is the same as for a (primary) vector

operator in a CFT without a UV breaking scale. This feature is another indication that the

UV brane in RS 2 provides a good UV regulator to the four dimensional CFT [31] (i.e., it

does not violate conformal invariance at large distances or violate perturbative unitarity).

In summary, we have seen that in the RS 2 model a number of the conclusions of [16]

found at weak CFT gauge coupling are also true, viz.vi AdS/CFT, at large Nc, strong ’t

Hooft coupling.

5.4.5 High energy or flat space limit

In the limit of large momenta, p ≫ κ, the geometry looks flat and we expect to recover the

flat space-time propagator, eq. (3.12). In particular, the flat-space propagator in this limit

has no contact interactions, as expected for an “unparticle-like” spectral representation of

dV = 3/2. That this is also the case for the RS 2 Green’s function as given in section 5.3

is technically less obvious.

First note that the RS 2 Green’s function has a similar general form to that of flat

space, in particular that the transverse and longitudinal components are almost the inverse

of each other. We just need to show that the expressions in the square brackets in eqs. (5.20)

and (5.21) reduce to the square root in eq. (3.12). Consider first the limit of large p and

fixed m5 and κ. Then from the large argument expansion of the Hankel functions for fixed

ν, namely that for large x = p/κ,

H(1)
ν (x) →

√

2

πx
ei(x−νπ/2−π/4) (5.46)

implying Hν−1(x)/Hν(x) → i, from which we obtain 2m2
5∆

(L)(p/κ) → [2∆(T )(p/κ)]−1 →
ip, agreeing with eq. (3.12) in the massless limit. Moreover, the corrections are easily seen
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to be of O(κ/p), so that in this limit contact interactions are not present.

More generally, the massive case can also be reproduced. To do that we need to

consider p, m5 ≫ κ. That is, send κ to zero, while holding p and m5 finite or, in other

words, κ → 0, ν → ∞, such that νκ = m5. The large ν expansion of the Hankel functions

can be found in ref. [62], on p. 912:

H(1)
ν (x) =

w√
3

exp

{

i

[

π

6
+ ν

(

w − w3

3
− arctan w

)]}

H
(1)
1/3

(ν

3
w3

)

+ O

(

1

|ν|

)

, (5.47)

where w =
√

x2/ν2 − 1. In this case, x = p/κ and w =
√

p2/m2
5 − 1. Using these results

and the asymptotic form for H
(1)
1/3(z), for large ν one finds

Hν−1(p/κ)/Hν(p/κ) → exp[i arccos(m5/p)] (5.48)

which is independent of κ to leading order. Therefore in this limit

2m2
5∆

(L)(p/κ) = [2∆(T )(p/κ)]−1 = p
H

(1)
ν−1(p/κ)

H
(1)
ν (p/κ)

− κν

= pei arccos(m5/p) − m5 = i
√

p2 − m2
5, (5.49)

which are the correct brane-to-brane Green’s functions in flat space.

Recall from our earlier discussion that for the flat space theory the spectral integral

converges in the UV, thus requiring no contact terms. That no contact terms are present

in RS 2 for p, m5 ≫ κ is also evident from the explicit expression for the high energy

propagators (5.49). On the other hand, as we just saw in the previous section, in the low

energy limit the theory has contact terms. Hence, the contact terms are generated at a

scale p ∼ κ.

5.5 Scene from position space

In this section we investigate the properties of the Green’s function in position space.

Position-space correlators of the vector boson for a few choices of m2
5 are shown in figure 1.

For comparison, the position-space correlator of a scalar field for several values of its bulk

mass are shown in figure 2. The scalar and vector correlators for a bulk mass much less

than the curvature scale are shown in detail in figures 3, 4 and 5 . For all of these plots we

have performed a numerical Fourier transform of the full momentum-space propagator.

The most prominent feature of these plots is their simplicity: at small and large dis-

tances the correlators can be described by two power laws, with the transition to a sig-

nificantly less-divergent power-law as x decreases occurring at the scale x ≈ κ−1. This

softening indicates that the contact interactions seen at low-energy at not fundamental,

but are instead resolved at the curvature scale. As we shall see, at large distances the power

laws in these figures are described by the pure CFT contribution, whereas the behavior

at short distances is given by the expected 5-dimensional behavior. The next striking

feature is that the transition between these two regimes is sharp, except for values of ν

that correspond to small bulk masses. For small values of the bulk mass parameters one
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can understand the deviations at intermediate distances from power-law behavior as due

to a scalar [49] or vector boson resonance. As we shall see, all these features can be

understood analytically.

5.5.1 General features of vector and scalar position space Green’s functions

To begin, we rotate to Euclidean space using eqs. (5.7), (5.18) and

ipH
(1)
ν−1(ip/κ)/H(1)

ν (ip/κ) = −pKν−1(p/κ)/Kν(p/κ) (5.50)

where K is the modified Bessel function. Here p2 ≥ 0 in Euclidean space, and, for this

section, we use the signature (+ + ++). Then the Euclidean brane-to-brane Green’s func-

tions are

∆
(E)
ij (p) =

(

δij −
pipj

p2

)

∆
(T )
E (p) +

pipj

p2
∆

(L)
E (p), (5.51)

where

∆
(T )
E (p) =

1

2

[

p
Kν−1(p/κ)

Kν(p/κ)
+ κ(ν − 1)

]−1

, (5.52)

∆
(L)
E (p) =

1

2m2
5

[

p
Kν−1(p/κ)

Kν(p/κ)
+ κ(ν + 1)

]

. (5.53)

We now Fourier transform the transverse and longitudinal components to position

space. Explicitly, we have

D
(T )
ij (x) =

∫ ∞

0

p3dp

4π3

∫ π

0
dθ sin2 θeipx cos θ

(

δij −
pipj

p2

)

∆
(T )
E (p), (5.54)

D
(L)
ij (x) =

∫ ∞

0

p3dp

4π3

∫ π

0
dθ sin2 θeipx cos θ

(

pipj

p2

)

∆
(L)
E (p). (5.55)

The integral over θ can be done analytically using [62]

Jγ(px) =
(px/2)γ

Γ[γ + 1
2 ]Γ[12 ]

∫ π

0
dθeipx cos θ sin2γ θ (5.56)

We write the total position space brane-to-brane propagator as

Dij(x) = D
(T )
ij (x) + D

(L)
ij (x) = a(x)δij + b(x)

xixj

x2
. (5.57)

Taking the trace of this equations and also multiplying it by pipj yields two equations,

from which we can solve for a(x) and b(x) in terms of ∆
(E)
T (p) and ∆

(E)
L (p). After some

algebra, we find

a(x) =

∫ ∞

0

p3dp

4π2

[(

J1(px)

(px)
− J2(px)

(px)2

)

∆
(T )
E (p) +

J2(px)

(px)2
∆

(L)
E (p)

]

, (5.58)

b(x) =

∫ ∞

0

p3dp

4π2

(

J1(px)

px
− 4

J2(px)

(px)2

)

(

∆
(L)
E (p) − ∆

(T )
E (p)

)

. (5.59)

The remaining integral over p can be done numerically.
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The results for three representative choices of ν (1.2, 2.2, and 3.2) are shown in figure 1

for both the a and b components. The AdS curvature κ is set to 1, such that the distance

x is in units of κ−1. As previously advertised, we see that the position space Green’s

functions are composed of two power laws, D ∼ xα. The power α for x < 1 is independent

of the value of ν, and is the same for a and b. For x ≫ 1, α depends on ν, but is the same

for the two components.7 As we later show, the x < 1 regime corresponds as expected to

the 5d flat space limit, while for x ≫ 1 and ν not close to 1, the two-point function behaves

like a pure 4d CFT.

For comparison, we show in figure 2 the Euclidean-position-space brane-to-brane cor-

relator for a bulk scalar with bulk mass mS . Its brane-to-brane propagator in Euclidean

momentum-space is given by [32, 49]

∆
(S)
E (p) =

1

2κ

[

pKνS−1(p/κ)

κKνS
(p/κ)

+ νS − 2

]−1

, (5.60)

which is almost identical to the RS 2 transverse propagator for a bulk vector field. (In this

formula νS =
√

4 + m2
S/κ2.) In position space the correlator is

Dscalar(x) =

∫ ∞

0

p3dp

4π3

∫ π

0
dθ sin2 θeipx cos θ∆

(S)
E (p) =

∫ ∞

0

p3dp

4π2

J1(px)

px
∆

(S)
E (p). (5.61)

When the bulk vector or scalar mass is much smaller than the AdS curvature scale then

the position space correlator has a third regime, intermediate between the two power-law

behaviors. This feature is visible in figures 4 and 5 for the vector, and in figure 3 for the

scalar. For the scalar it is known that in this limit there is a resonance present, bound to

the brane [49].

This small mass limit is discussed further in section 5.5.6, where we show that like

the scalar, for the vector there is an intermediate region where the transverse correlator is

dominated by a resonance coupled to a CFT. As with the scalar, here the vector correlator

exhibits pure CFT behavior only at very large distances. On the other hand, for vanishing

mass the zero mode vector boson decouples at low energies [31], whereas the scalar does

not [39].

5.5.2 Large x

We now wish to understand the large x behavior of the Fourier transform of these expres-

sions for the vector correlator. A starting observation is that if a function, or any of its

derivatives, have discontinuities on the real axis, these singularities dominate the Fourier

transform at high frequencies (i.e., at large x in our case). This statement is intuitive:

“sharp” features such as discontinuities, cusps (discontinuities of the derivative), etc, con-

tain high frequency (i.e., large distance) components. Quantitatively, “sharp” features are

points of nonanalyticity on the real axis. They can be shown to give a power law spectrum

at high frequencies, while functions analytic on the real axis give an exponentially decaying

spectrum. For an excellent discussion of this, see [63], pp. 17-25.

7In this case the relative O(1) numerical coefficient between a and b is also physically important, as will

be discussed later.
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Figure 1. The Euclidean Green’s function of the vector field in position space, Dij(x) = a(x)δij +

b(x)xixj/x2. Functions a(x) (top) and −b(x) (bottom) are plotted. The AdS curvature κ is set to

1, i.e., the distance x is in units of κ−1. In both cases, three different values of ν are considered, as

labeled in the plots. The functions exhibit two power law regimes; physically, these correspond to

the flat space limit (x < 1) and to the CFT-dominated limit (x ≫ 1), as explained in the text.

In practice, a “sharp” feature (for example a discontinuity in the third derivative) may

be “concealed” superimposed on a much larger “smooth” (analytic) component. In this

case, to understand the Fourier spectrum at high frequencies (i.e., large distances), the

singular part must be identified and extracted.

Let us see how these observations apply to our case. Let us for the moment assume
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Figure 2. The Euclidean Green’s function of the scalar in position space, with the same conventions

and notation as figure 1. The effect of the resonance when ν is close to 2 is quite pronounced.
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Figure 3. Detail of the Euclidean Green’s function of the scalar in position space for νS = 2.0001,

with the same conventions and notation as figure 1.
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that 2ν is not an integer. Then, the integrands in eqs. (5.54) and (5.55) can be formally

expanded as a power law series in p/κ,

∆
(L)
E (p) ≃ 1

2κ(ν2 − 1)

[

(1 + ν) +
(p/κ)2

2(ν − 1)
− (p/κ)4

8(ν − 1)2(ν − 2)
+ · · ·

− 2νΓ(−ν)

Γ(ν)

( p

2κ

)2ν
[1 + · · · ]

]

, (5.62)

∆
(T )
E (p) ≃ 1

2κ

[

1

ν − 1
− (p/κ)2

2(ν − 1)3
+

(3ν − 5)(p/κ)4

8(ν − 1)5(ν − 2)
+ · · ·

+
2νΓ(−ν)

(ν − 1)2Γ(ν)

( p

2κ

)2ν
[1 + · · · ]

]

. (5.63)

For completeness we also provide the low momentum expansion of the scalar Green’s func-

tion (5.60),

∆
(S)
E (p) =

1

2κ

[

1

νS − 2
− (p/κ)2

2(νS − 1)(νS − 2)2
+

3(p/κ)4

8(νS − 1)2(νS − 2)3
+ · · ·

+
2νSΓ[−νS]

(νS − 2)2Γ[νS ]

( p

2κ

)2νS

[1 + · · · ]
]

(5.64)

Then as a function of p, the integrand of a, b and Dscalar are each a sum of two parts,

an analytic component — represented by the terms with integer powers of p2/κ2 — and the

one with a branch point at zero — given by the terms of the form p2ν+2n, n = 0, 1, 2 . . . ..

Notice that the Fourier transform of the analytic parts is exponentially suppressed at

large x. Indeed, each of the terms in the power expansions is of the form [62]

∫ ∞

0
dtJβ(at)tα = 2αa−α−1 Γ(1/2 + β/2 + α/2)

Γ(1/2 + β/2 − α/2)
(5.65)

For the analytic terms we have α = 2n + 2, β = 1 for the terms multiplying J1(px), and

α = 2n + 1, β = 2 for the terms multiplying J2(px). One can confirm that for these

values the right-side of eq. (5.65) vanishes.8 This means integrating the analytical parts in

eqs. (5.62), (5.63) and (5.64) term by term we obtain zero. Indeed, these are contact terms,

δ(x), ∂2δ(x), etc, vanishing for nonzero x. This does not mean the Fourier transform of

the whole analytic function vanishes for nonzero x — it does not — but it does show that

at large x the result falls off faster than any power of 1/x, i.e. exponentially.9

Next we turn to the non-analytic terms in the expansions. The important point here

is that the integral over the noninteger powers of p gives a power law. The lowest such

power, p2ν , gives the largest contribution. Then the value of a(x), eq. (5.58), for large x

8For n = 0 and ν > 1 the integrand multiplying J2(px) vanishes identically.
9An obvious example is provided by a massive particle in four dimensions. If we expand the Euclidean

propagator (p2 + m2)−1
≃ m−2

−m−4p2 + m−6p4
− m−8p6 and Fourier transform it term by term, we get

a series of contact interactions, while by integrating the complete function we get the well-known answer

1/(2π)2(m/x)K1(mx). The latter indeed decays exponentially at large x as ∝ exp(−mx), and m is the

distance to the singularity in the complex plane.
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is the same as the Fourier transform of its leading non-analytical part. Explicitly, using

eqs. (5.52), (5.53), (5.58), and (5.65),

a(x)
large x−→ 1

π2

ν2(ν + 2)

(ν − 1)2
1

κ2ν+1x2ν+4
(5.66)

The same argument can be applied to find the large x behavior of b(x). In position space,

this becomes

b(x)
large x−→ − 1

π2

2ν2(ν + 2)

(ν − 1)2
1

κ2ν+1x2ν+4
(5.67)

Note that b(x)/a(x)
large x−→ −2 as predicted by the AdS-CFT correspondence. We find good

agreement in comparing eqs. (5.66) and (5.67) with the curves in figure 1 at large x. The

position-space correlator at large distances therefore has all the properties of a CFT vector

correlator, providing another validation for the RS2 -CFT correspondence [29, 31].

For the scalar one obtains

Dscalar(x)
large x−→ 1

π2

ν2
S(νS + 1)

(νS − 2)2
1

κ2νS+1x2νS+4
(5.68)

Thus the dimension of the scalar operator in the CFT is dS = 2 + νS , which is cor-

rect [35, 36]. This analytic formula agrees well with the plots in figures 2 and 3 at large x.

Although the contact interactions are found to be manifestly present at low-

momentum, there is an additional subtlety here. While the contact terms are seen to

dominate the low-energy scattering amplitude, we have seen that interactions between two

sources of the vector field separated by a large distance on the brane are dictated by the con-

formal part of the interaction. Or in other words, scattering amplitudes at large and fixed

impact parameter are dominated by the CFT contribution, not the contact interactions.

The dominance of the contact interactions in scattering amplitudes can be understood by

recalling that plane wave scattering, which averages over all impact parameters large and

small, receives contributions from all distance scales, even if the external momenta are

small. The notions of “low energy” and “long distance” mean not quite the same thing in

this case.

5.5.3 Short distance

Next we turn to understanding the short distance limits of the correlators. To do that, we

need to consider the limit of large space-like p and use limp→∞pKν−1(p/κ)/Kν(p/κ) = p.

Then using again eq. (5.65), we immediately obtain

a(x) =
1

8π2

∫ ∞

0
p3dp

[(

J1(px)

(px)
− J2(px)

(px)2

)

(p−1 + · · · ) +
1

m2
5

J2(px)

(px)2
(p + · · · )

]

=
1

8π2m2
5

3

x5
+ · · · , (5.69)

b(x) =
1

8π2m2
5

∫ ∞

0
p3dp

(

J1(px)

px
− 4

J2(px)

(px)2

)

(p + · · · ) = − 1

8π2m2
5

15

x5
+ · · · (5.70)
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and

Dscalar(x) =

∫ ∞

0

p3dp

4π2

J1(px)

px

(

1

2p
+ · · ·

)

=
1

8π2

1

x3
+ · · · (5.71)

The quantitative agreement between these analytical results and the numerical ones given

in figures 1, 2, 3, 4 and 5 at short distances is excellent. These are the brane-to-brane

correlators one expects from a massive vector or scalar boson propagating in flat, five-

dimensional space.

5.5.4 Technical remark

Taken literally, the integrals in the above equations do not converge. For example, at large

p the integrand in eq. (5.69) behaves as ∼ p3/2 cos[px− 3π/4]. In general then, the integral

in eq. (5.65) converges only for −Re β − 1 < Re α < 1/2, a > 0 [62]. Because of this

divergence, the integrals are understood to be regularized with the damping factor e−ǫp.

The regularized integral can be obtained analytically from p. 691, eq. 6.621-1 of [62],

∫ ∞

0
e−ǫptαJβ(at)dt =

(a/2)β

√

(ǫ2 + a2)β+α+1

Γ[β + α + 1]

Γ[β + 1]
F

(

β + α + 1

2
,
β − α

2
, β + 1;

a2

ǫ2 + a2

)

(5.72)

where F (a, b, c; z) is the hypergeometric function. The limit ǫ → 0 of the right-hand

side of the above equation gives eq. (5.65). This, of course, is the standard approach in

dealing with Fourier transforms of Green’s functions.10 The important point is that the

same consideration of convergence applies to our numerical integrals in eqs. (5.58), (5.59),

and (5.61).

5.5.5 Finite range

As we have seen, the low-momentum expansion of the vector and scalar propagators con-

sists of a series of analytic terms and a series of non-analytic terms, of which the leading

non-analytic term has a singularity at p2 = 0. From the general considerations in [63],

one therefore expects that at large distances the Fourier transform to only be power-

law suppressed.

The analytic terms, on the other hand, give rise to delta functions and derivatives

of delta functions. This would seem to imply that at short distances the position-space

correlator is highly singular. But this is incorrect, because this expansion cannot be used

to determine whether these contact terms indeed characterize the short distance behavior,

simply because the series describes a function that is being expanded about its branch

point, which is at p2 = 0. A simple example is provided by the propagator of a massive

particle, which has a finite range of O(m−1), that is missed in the Fourier transform of

the series expansion about p2 = 0 (see also footnote 9). Instead, one needs the Fourier

transform of the high momentum behavior of the propagators, which as we have seen

10For example, the same regularization is assumed when a constant in p space is transformed to yield a

contact term in position space: for α = 2, β = 1, the right-hand-side of (5.65) is Γ(1 + α/2)/Γ(1 − α/2),

which indeed vanishes.
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explicitly have no fundamental contact interactions. Indeed this description is confirmed

in the region 0 < x . 1 shown in figures 1 and 2, where the Euclidean propagators make

a transition around the scale x ≃ κ−1 to a less divergent power-law.

5.5.6 Small bulk vector and scalar masses: m2
5,m

2
S ≪ κ2

Finally, we return to the case of ν → 1 and νS → 2, which are not covered by the previous

analyses. We begin with the vector, returning to the scalar at the end of the section.

The appearance of divergences at ν = 1 in the asymptotic form of the correlators

indicates that our perturbative expansion is breaking down. This is not surprising, since

physically this is the limit of vanishing mass for the bulk vector boson, or equivalently, the

limit in which the corresponding CFT current is conserved (vanishing anomalous dimen-

sion). Indeed, inspecting the series expansions eqs. (5.62) and (5.63) reveals (p/κ)2 ≪ ν2−1

and (p/κ)2 ≪ (ν−1)2 are required, respectively. These conditions are obviously impossible

to satisfy for any fixed p when ν → 1. For ν close to 1 we therefore need to be more careful

with the analysis.

To understand the physics, first consider the limit ν = 1. Then the bulk gauge symme-

try is restored and we can ignore the longitudinal propagator since it is gauge-dependent,

and focus on the transverse propagator which from eq. (5.52) is simply

∆
(T )
E (p) =

1

2

[

K1(p/κ)

pK0(p/κ)

]

= −1

2

κ

p2 log (p/(2κ))
+ O(1) + O(p2) + O(1/ log p2), (5.73)

where the second line is valid at low energies p ≪ κ. The Fourier transform of the leading

log term gives x−2, which is not the correct scaling behavior for the correlator of a current

of dimension 3 (which would be x−6). As explained by [28] and [31], the CFT interpretation

of this behavior is instead the following. In the UV the four-dimensional theory has an

external massless gauge boson coupled to a conserved current of a CFT. In the IR the gauge

boson mixes with the vector current of the CFT, producing the non-trivial gauge boson

correlator. To see that, note that to next-leading order in perturbation theory the gauge

boson correlator is given by the free-theory propagator plus a vacuum bubble insertion of

the CFT current-current correlator. The latter insertion causes the coupling to run to zero

at p → 0, which is why the RS 2 model has no massless four-dimensional gauge boson in

its spectrum. Note that this interpretation gives 1/p2 × (p2 log p2) × 1/p2 ∼ log p2/p2 for

one such insertion, a form which agrees with eq. (5.73) when the log p2 term can be treated

as “small”; AdS-CFT predicts that summing the bubbles must reproduce eq. (5.73). From

eq. (5.73) we learn that in this limit the Fourier transform is regular, and that contact

interactions are indeed present. GIR [16] also found contact interactions to be present

(and in fact necessary) when the CFT current is conserved.

Let us now consider ν close to but not equal to 1. Recall that this means the bulk

vector boson mass m5 is much smaller than the curvature scale. Physically we expect that

the description for m5 ≪ κ should smoothly map onto the four dimensional description

above having ν = 1 (i.e., m5 = 0). This means there should be a light state (actually

a resonance), with a mass m0 much less than the curvature scale. When m2
5 → 0 this

resonance becomes identified with the (stable) massless four dimensional gauge boson state
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that mixes with the CFT, described above. For m2
5 > 0 this state is unstable because it

couples to the CFT, but for small enough m5 the resonance is expected to be narrow since

it must become stable in the limit m5 = 0.

To find the resonance, we just have to look for a pole in the Minkowski-space transverse

propagator ∆(T )(p). That is,

pR

κ

H
(1)
ν−1(pR/κ)

H
(1)
ν (pR/κ)

− (ν − 1) = 0 (5.74)

with p2
R = m2

0 − im0Γ. Moreover, the mass and width should satisfy m0/κ ≪ 1, Γ/m0 ≪ 1

when ν − 1 ≪ 1. A consistent solution for the resonance mass and width can be found.

It is

m2
0 = 2(ν − 1)κ2 1

− log[m2
0/(4κ

2e−2γ)]
(5.75)

and is positive-definite in the region where the perturbative expansion can be trusted, i.e.,

pR ≪ κ. Here γ = 0.577216 . . . . is the Euler-Gamma constant. The approximate solution

is given by

m2
0 ≃ 2(ν − 1)κ2 1

− log[(ν − 1)/4]
(5.76)

In this same limit of m0/κ ≪ 1 the width is

Γ

m0
=

π

− log[m2
0/(4κ

2e−2γ)]
(5.77)

which is automatically narrow in the region | log m2
0/κ

2| ≫ 1. Solutions to eq. (5.74) can

be found numerically and are found to agree quite well with these approximate analytical

results in the region where we expect them to. Finally, since the mass and width of the

resonance vanish in the limit ν → 1, there is a smooth transition from this description to

the preceding description of ν = 1.

In figures 4 and 5 the coefficients a(x) and b(x) of the position space propagator when

ν = 1.000001 are shown. Because of the resonance, the Fourier transform of the transverse

propagator exhibits three regimes.

First, there is the region x ≪ κ−1 described by the flat-space region. At distances below

the curvature scale the position space correlator is dominated by the longitudinal mode,

as explained previously and seen in figures 4 and 5. However, one may also be interested

in the contribution of the transverse mode to the position-space correlator, simply because

at short distances the mass of the vector boson may be generated by a Higgs mechanism.

If so, then at distances below the inverse Higgs boson mass the longitudinal component

becomes gauge-dependent and unphysical. For that reason, in figures 6 and 7 we show

the contributions of the transverse mode to the total position space correlator, again for

ν = 1.000001.

To obtain an analytic formula for the contribution of the transverse propagator at

short distances, one sets ν = 1 and expands

∆
(T )
E (p) =

1

2p

(

1 +
κ

2p
+ · · ·

)

(5.78)
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It turns out the next-to-leading order term is needed because the leading terms contributing

to a(x) at O(x−3) cancel. One then has for the contribution of the transverse mode only,

a(T )(x)
x→0
=

∫ ∞

0

p3dp

4π2

(

J1(px)

(px)
− J2(px)

(px)2

)(

1

2p

)[

1 +
κ

2p
+ · · ·

]

=
1

32π2

κ

x2
+ · · · (5.79)

b(T )(x)
x→0
=

∫ ∞

0

p3dp

4π2

(

J1(px)

px
− 4

J2(px)

(px)2

)(

− 1

2p
+ · · ·

)

=
3

8π2

1

x3
+ · · · (5.80)

These expressions agree well with the short-distance behavior of the numerical results

presented in figures 4 and 5.

Next, there is an intermediate region κ−1 ≪ x ≪ m−1
0 . Here the position-space

correlator is dominated by its longitudinal component. To see that, note that as ν → 1 the

transverse propagator has the form (5.73), but the longitudinal propagator is instead

∆
(L)
E (p)

ν→1−→ 1

2

1

ν − 1
≫ ∆

(T )
E (p) (5.81)

Inserting this solution into (5.58) and (5.59) one finds

a(x) ≃ 1

4π2

1

ν − 1

1

κx4
+ · · · (5.82)

b(x) ≃ −1

π2

1

ν − 1

1

κx4
+ · · · (5.83)

which agrees well with the plots in this region of x. Since the resonance is in the transverse

propagator which is suppressed compared to the longitudinal propagator, its effect on the

position space correlator is not noticeable in figures 4 and 5 .

The transverse contribution to a(x) in this region is shown in figure 6, and to b(x) in

figure 7. Good analytic approximations to these contributions are obtained by beginning

with the momentum-space transverse propagator evaluated for vanishing bulk mass (ν = 1),

eq. (5.73),

∆
(T )
E (p) ≃ −1

2

κ

p2 log[p/(2κ)]
(5.84)

Next, since the Fourier transform of this expression is dominated by p ∼ 1/x and log p

is a slowly varying function, we set p = 1/x in the logarithm and Fourier transform p−2.

This gives

a(T )(x) ≃ κ

16π2

1

x2

1

log[cκx]]
(5.85)

b(T )(x) ≃ κ

8π2

1

x2

1

log[cκx]
(5.86)

These results are also shown in figures 6 and 7. The numerical constant c = 2e−γ is

determined by fitting these formulae to the plots. These figures are seen to agree well with

the numerical solution for κ−1 ≪ x ≪ m−1
0 .
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Figure 4. The Euclidean Green’s function a(x) of the vector boson in position space, with the

same conventions and notation as figure 1. Note that compared to figure 1, here the transition to

the pure CFT behavior has been pushed out to x ∼ m−1

0 .

At x ∼ m−1
0 one expects a cross-over from the ‘logarithmic’ scaling to a region domi-

nated by the resonance. One has m−1
0 ∼ (ν−1)−1/2 log1/2(ν−1)κ−1 which for ν = 1.000001

is roughly ∼ few × 103κ−1 ≫ κ−1. The location of this transition is in general agreement

with the results seen in figures 4, 7.

Finally, for the region x ≫ m−1
0 the position-space correlator exhibits the CFT be-

havior, namely that b(x)/a(x)
large x−→ −2 and a(x) ∼ x−6−2(ν−1). As ν → 1 the pure CFT

behavior is pushed to x → ∞. We end this section by considering the bulk scalar boson

when m2
S ≪ κ2. Its position space correlator is shown in detail in figure 3 for νS = 2.0001.

Notice that compared to the simple power-law behavior in figures 2 seen for larger values

of νS , here there is an additional prominent “bulge” at intermediate distances. This effect

can be simply understood as due to the scalar resonance found in ref. [49] . For a bulk

scalar having m2
S ≪ κ2 there is a resonance present, with a mass and width given by [49]

m2
bs = m2

S/2 (5.87)

Γbs =
π

16

m3
bs

κ2
(5.88)

which can be obtained by expanding the scalar Green’s function (5.60) at small momentum.

Then for κ−1 ≪ x ≪ xCFT the position-space Green’s function is easily found to be

Dscalar(x) =
1

4π2

mbs

x
K1(mbsx) (5.89)

where xCFT is defined to be the scale at which the contribution of the CFT begins to

dominate. Comparing the plot with the analytic formula in this region one finds good
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Figure 5. The Euclidean Green’s function b(x) of the vector boson in position space, with the

same conventions and notation as figure 1.
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Figure 6. The Euclidean Green’s function a(x) of the vector boson in position space. Here the

contribution of the transverse propagator is also shown, with the same conventions and notation as

figure 1.
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Figure 7. The Euclidean Green’s function b(x) of the vector boson in position space. Here the

contribution of the transverse propagator is also shown, with the same conventions and notation as

figure 1.

agreement. The cross-over to pure CFT behavior occurs when the resonance contribution

to the position-space correlator is comparable to the contribution from the CFT, which

upon equating (5.89) with (5.68) leads to m5xCFT ∼ log[κ/m5] [49].

The difference between the effect of the scalar and vector resonances on the position

space correlator is probably due to the logarithmic running of the coupling of the vector

boson to the CFT at energies above its mass. Indeed, the analytic expression for a(x)

(eq. (5.73)) corresponding to m2
5 = 0 agrees quite well with the numerical results in the

region κ−1 < x < m−1
0 . Also note the transition to the pure CFT behavior is seen to

occur at approximately x ∼ m−1
0 ≫ κ−1. For larger values of m5 below the curvature

scale there is still a resonance, but the width is broad and analytic solutions cannot be

obtained perturbatively.

5.6 Generalization to other brane dimensions

The analysis of perturbative unitarity can be generalized in a straightforward manner to

other space-time dimensions. For massive vector fields propagating on AdSD+1 the relation

between the order and the vector boson bulk mass becomes ν =
√

m2
D+1 + (D − 2)2/4 [22]

and the corresponding operator dimension is dV = D/2 + ν [22]. Next, we find that the

unitarity condition for forward scattering of brane localized states through an intermediate

bulk gauge boson remains m2
D+1 ≥ 0, implying that ν ≥ (D − 2)/2. Taken together these

relations and the bulk unitarity condition ImA ≥ 0 imply the correct unitarity bound [53]

dV ≥ D − 1 (5.90)
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on primary vector operators in D space-time dimensions.

Next we turn to generalizing the properties of the spectral representation. For the

transverse mode one has in D space-time dimensions

〈Oµ(p)Oν(−p)〉 ∼
[

−ηµν +
pµpν

p2

]
∫ ∞

0
dM2 (M2)dV −D/2

p2 − M2 + iǫ
(5.91)

The only change from D = 4 is a dependence on D in the power; this is needed in order

that in position-space the correlator have scaling dimension dV . Observe that the integral

converges in the UV only if

dV < D/2 (5.92)

If dV is larger than this value, then the integral must be regularized and this will lead to

contact interactions.

To see that the contact interactions are important for values of dV precisely above

this upper limit, note that in the scattering amplitude the leading non-analytic part will

scale as

A ∼ p2ν (5.93)

where

ν = dV − D/2 (5.94)

The contact interactions begin in general at p0 and therefore dominate if ν > 0, or in other

words, dV > D/2.

Combined with the unitarity bound, we see that the spectral integral converges and

the vector contact interactions are subdominant only for

D − 1 ≤ dV < D/2 (5.95)

which cannot be satisfied for any D ≥ 2. For (gauge-invariant, primary) vector operators

then, contact interactions appear to be always relevant to low-energy scattering amplitudes.

It is instructive to repeat this exercise for scalar operators. The unitarity bound is [53]

dS ≥ (D − 2)/2 (5.96)

which is weaker than for vector operators. The conditions that the spectral integral is

convergent in the UV and that contact interactions are subdominant remains unchanged,

dS < D/2 (5.97)

Thus for scalars, the window where unitarity is obeyed, the spectral integral is convergent

in the UV, and contact interactions are subdominant (or nonexistent) is

(D − 2)/2 ≤ dS ≤ D/2 (5.98)

Note that for D = 2 the window is 0 ≤ dS < 1, which is precisely the range of scalar

operator dimensions considered by Georgi and Kats in their D = 2 unparticle example [17].

It is therefore not surprising that they do not find any contact interactions. But given the

above general discussion on vector operators, we do expect contact interactions in this

model if the “SM” particles are coupled to vector operators of the Sommerfeld model,

rather than to scalar operators. It would be interesting to explore this further.
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6 Lykken-Randall model

In this section we consider the Lykken-Randall model [24], which describes the RS 2 model

with in addition a “tensionless brane” or “probe brane” (LR brane) located in the infra-

red at z = zSM > κ−1. In fact, the location of the UV brane will not be essential to the

following discussion and it can be decoupled. We will assume that all the SM degrees of

freedom are localized on the LR brane. As we shall see, this scenario provides another

realization of “unparticle-stuff”. We will see that the following properties of unparticles -

the phase of the unparticle propagator, the tensor structure of the CFT propagator, the

unitarity bounds on the operator dimensions, and dimensional transmutation - all emerge

naturally. Contact interactions will also be found.

There are two factors that motivate consideration of this model. First, from the CFT

description the SM particles are composite fields of the breaking of CFT1 → CFT2 × SM

at the scale ΛU = 1/zSM [31]. Note that this “CFT2” plays the role of the hidden sector

CFT in the unparticles scenario, whereas here the “CFT1” is in the unparticle scenario the

UV completion of the SM, the hidden sector CFT and their interactions. Above the scale

ΛU the transition is sharp, since for zUV < z < zSM the geometry is engineered to be AdS.

Likewise, the CFT2 is described in the bulk by those modes living in the region z > zSM .

Because both the SM fields and the states in the low-energy CFT “(CFT2)” arise from the

same high-energy CFT, effective field theory suggests that interactions between these two

sectors in the form of higher dimension operators will be generated at the “transmutation

scale” ΛU . Thus from the CFT point of view, interactions between the SM fields and

low-energy CFT operators are generically expected. From the brane point of view, these

interactions are modeled by introducing explicit couplings between SM operators localized

on the LR brane and fields living in the bulk.

That interactions exist between probe brane localized observers and the hidden sector

CFT has already been previously noted in the literature. Such observers see two kinds of

gravitational corrections to Newton’s law [24]: a universal correction caused by the bulk

gravitational modes [23]; and a probe brane-specific correction [24]. The latter correction,

not present in the original RS 2 model, was interpreted in [31] as due to the presence of

z−1
SM suppressed contact interactions between the stress-tensors of the Standard Model and

the CFT2.

Finally, the “transmutation scale” in the RS 2 model occurs at the AdS curvature

scale κ. But since the curvature scale together with the five-dimensional Planck mass

determines the four dimensional Planck mass, it is desirable to construct a model in which

the transmutation scale is unrelated to these other ones. The LR model does just that.

6.1 Transverse mode

In the region κ−1 < z < zSM the solution for the transverse propagator is

∆
(T )
< (p, z) = a

(1)
T (p)z (Jν(pz) + b(p)Yν(pz)) (6.1)

where as before p =
√

p2 and ν =
√

1 + m2
5/κ

2. Throughout we will assume that m2
5/κ

2 ≥
−1 in order that ν is purely real. (Thus the Bessel functions Jν(x) and Yν(x) are real.)
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Later it will be shown that in order for SM-SM scattering amplitudes on the LR brane to

be unitary the stronger condition m2
5 ≥ 0 is required.

The factor b(p) is fixed by the Neumann boundary condition at the UV brane (z = κ−1)

to be

b(p) = − (1 − ν)Jν(p/κ) + p/κJν−1(p/κ)

(1 − ν)Yν(p/κ) + p/κYν−1(p/κ)
(6.2)

and by inspection is real. This factor is temporarily neglected in what follows in order to

simplify the algebra. It will be reinstated in the final result below, eq. (6.10). Physically,

we can neglect this contribution to the Green’s function for p/κ ≪ 1 since in this limit

b(p) ≃ (p/κ)2ν ≪ 1. Moreover, since we will evaluate the Green’s function at z = zSM ≫
κ−1, such contributions are always subdominant. (If pzSM ≃ O(1) the contribution of

the bYν term is suppressed by (p/κ)2ν and if pzSM ≪ 1 it is suppressed by (κzSM )−2ν .)

Therefore to a good approximation

∆
(T )
< (p, z) = a

(1)
T (p)zJν(pz) (6.3)

The overall normalization factor will be fixed by the boundary condition at the location of

the LR brane.

We next solve the bulk equation of motion in the region z > zSM . The general solution

for the transverse mode satisfying the outgoing wave boundary condition is simply

∆
(T )
> (p, z) = a

(2)
T (p)zH(1)

ν (pz) (6.4)

Continuity of ∆(T ) at z = zSM implies

a
(1)
T (p) = a

(2)
T (p)

H
(1)
ν (pzSM )

Jν(pzSM )
(6.5)

Finally, the modified Neumann boundary condition (4.31) at z = zSM
[

∂z∆
(T )
> − ∂z∆

(T )
<

]

|z=zSM
= aSM (6.6)

fixes a
(2)
T (p) to be

a
(2)
T (p) = −i

π

2
aSMJν(pzSM ) (6.7)

(Recall that the dependence on the UV brane has been dropped here.) The transverse

propagator for p/κ ≪ 1 and with the source localized at z = zSM is therefore (using the

notation of (4.10))

∆
(T )
> (p, z) = −i

π

2
aSMJν(pzSM )zH(1)

ν (pz) (6.8)

The effect of the UV boundary condition can be kept. Keeping b(p) given by (6.2) one

finds more generally that

∆
(T )
> (p, z) = −i

πz

2
aSM

H
(1)
ν (pz)

1 + ib(p)
(Jν(pzSM ) + b(p)Yν(pzSM )) (6.9)

=
πz

2
aSM

H
(1)
ν (pz)

H
(1)
ν (p/κ)

[

p/κH
(1)
ν−1(p/κ)/H(1)

ν (p/κ) − (ν − 1)
]−1

× (p/κ [Jν(pzSM )Yν−1(p/κ) − Jν−1(p/κ)Yν(pzSM )]

−(ν − 1) [Jν(pzSM )Yν(p/κ) − Jν(p/κ)Yν(pzSM )]) (6.10)
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To summarize, this is the brane-to-bulk transverse propagator evaluated in the bulk at

z > zSM for a source localized on the LR brane at z = zSM . In the limit p/κ ≪ 1 one

recovers (6.8). The brane-to-brane propagator is obtained by setting z = zSM .

As a check on this computation, we can consider sending zSM → κ−1. In this limit

we should recover the RS2 transverse propagator (5.4) with cT (p) given by (5.6). Using

the identity

Jν(x)Yν−1(x) − Jν−1(x)Yν(x) =
2

π

1

x
(6.11)

and (6.10) gives

∆T
>(p, z > zSM → κ−1) = z

H
(1)
ν (pz)

H
(1)
ν (p/κ)

[

p/κH
(1)
ν−1(p/κ)/H(1)

ν (p/κ) − (ν − 1)
]−1

(6.12)

which agrees with (5.4) and (5.6) (up to an irrelevant normalization of 1/2).

Finally, taking the limit z → zSM of (6.8) gives the transverse brane-to-brane propa-

gator in the approximation of neglecting the UV dependence,

∆(T )(p) = −i
πzSM

2
aSMJν(pzSM )H(1)

ν (pzSM ) (6.13)

In the low energy limit pzSM ≪ 1 one obtains from (6.13)

∆(T )(p) = zSMaSM

[

− 1

2ν
− 1

4

1

ν(ν2 − 1)
(pzSM )2 + · · ·

−i
π

2(Γ[ν + 1])2
(1 + i cot πν)

(pzSM

2

)2ν
+ · · ·

]

(6.14)

6.2 Longitudinal mode

The equation for ∆5 in the bulk is

− p2∆5 − ∂z(a
−3∂z(a

3∆5)) + m2
5a

2∆5 = 0 (6.15)

In the region κ−1 < z < zSM the solution having a Dirichlet boundary condition (4.28)

at z = κ−1 is

∆<
5 (p, z) = a

(1)
L (p)z2

(

Jν(pz) − Jν(p/κ)

Yν(p/κ)
Yν(pz)

)

(6.16)

As with the transverse mode, for p/κ ≪ 1 and zSM ≫ κ−1 we can to a good approximation

drop the second term, such that

∆<
5 (p, z) = a

(1)
L (p)z2Jν(pz) (6.17)

Later we will restore the dependence on the UV boundary condition (see eq. (6.22) below).

In the region z > zSM the solution satisfying the outgoing wave condition is

∆>
5 (p, z) = a

(2)
L (p)z2H(1)

ν (pz) (6.18)

Substituting the solutions for ∆5 in the two regions into the boundary conditions (4.33)

and (4.35) fixes a
(1)
L (p) and a

(2)
L (p). One finds

a
(2)
L (p) = −i

π

2

1

z2
SMaSM

1

m2
5

Jν(pzSM )

[

1 + ν − pzSM
Jν−1(pzSM )

Jν(pzSM )

]

(6.19)
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and therefore for z > zSM ,

∆>
5 (p, z) = −i

π

2

z2

z2
SM

1

aSMm2
5

H(1)
ν (pz)Jν(pzSM )

[

1 + ν − pzSM
Jν−1(pzSM )

Jν(pzSM )

]

(6.20)

To obtain ∆(L) we use (4.19) in the bulk region z > zSM to obtain

∆(L)(p, z > zSM ) = −i
π

2

1

aSMzSMm2
5

Jν(pzSM )

[

1 + ν − pzSM
Jν−1(pzSM )

Jν(pzSM )

]

× z

zSM

[

pzH
(1)
ν−1(pz) − (1 + ν)H(1)

ν (pz)
]

(6.21)

If the dependence on the UV brane is restored, one finds the following more complicated

expression,

∆(L)(p, z > zSM ) =
1

m2
5

z

zSM

1

aSMzSM

H
(1)
ν (pz)

H
(1)
ν (p/κ)

(

pzH
(1)
ν−1(pz)/H(1)

ν (pz) − (ν + 1)
)

× ([Jν(pzSM )Yν(p/κ) − Jν(p/κ)Yν(pzSM )] (1 + ν)

+pzSM [Jν(p/κ)Yν−1(pzSM ) − Yν(p/κ)Jν−1(pzSM )]) (6.22)

which is equivalent to (6.21) in the limit p/κ ≪ 1. The brane-to-brane propagator is

obtained by setting z = zSM .

Next we check this result against the longitudinal propagator in the RS 2 model. The

limit zSM → κ−1 is straightforward and gives

∆(L)(p, z > κ−1) =
κ

m2
5

z
H

(1)
ν (pz)

H
(1)
ν (p/κ)

(

pzH
(1)
ν−1(pz)/H(1)

ν (pz) − (ν + 1)
)

(6.23)

which agrees with (5.17) up to an irrelevant factor of 1/2 (which is the same discrepancy

the transverse propagator (6.10) has with the previous computations (5.4) and (5.6), so

their ratio agrees).

Finally, taking the limits z → zSM and p/κ ≪ 1 gives the longitudinal brane-to-brane

propagator in limit that the UV dependence is dropped,

∆(L)(p) = i
π

2m2
5

1

aSMzSM
Jν(pzSM )

[

1 + ν − pzSM
Jν−1(pzSM )

Jν(pzSM )

]

×
[

(1 + ν)H(1)
ν (pzSM ) − pzSMH

(1)
ν−1(pzSM )

]

(6.24)

In the low-energy limit pzSM ≪ 1 one obtains from (6.24)

∆(L)(p) =
1

m2
5

1

aSMzSM

[

−ν2 − 1

2ν
+

1

4

1

ν
(pzSM )2 + · · · (6.25)

+i
π

2(Γ[ν + 1])2
(1 + i cot πν) (ν − 1)2

(pzSM

2

)2ν
+ · · ·

]

(6.26)

where only the first few terms have been shown.
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6.3 Non-analytic or CFT terms

At first sight it appears difficult for the non-analytic terms in the transverse and longitudi-

nal propagators to combine at low-energies into the form required by conformal invariance;

they don’t even appear to be of the same magnitude. This isn’t the case though. The

transverse propagator (6.13) scales as aSMzSM = κ−1, whereas the longitudinal propaga-

tor (6.24) scales as m−2
5 /(aSMzSM ) = (ν2 − 1)−1κ−1. So they are indeed parametrically

the same size.

Next we combine the low-energy expansions, (6.14) and (6.26). After some short

algebra one has

∆µν(p) =

(

−ηµν +
pµpν

p2

)

∆(T )(p) − pµpν

p2
∆(L)(p)

= · · · + πκ−1

2Γ[ν + 1]2
(i − cot πν)

(pzSM

2

)2ν
(

ηµν − 2ν

ν + 1

pµpν

p2

)

+ · · ·

= · · · + πκ−1

2Γ[ν + 1]2
exp[−iπν]

sin[πν]

(pzSM

2

)2ν
(

−ηµν +
2ν

ν + 1

pµpν

p2

)

+ · · · (6.27)

where the local and subleading non-analytic terms are not shown. Note that the non-

analytic terms have the correct tensor structure and mass dimension to describe a CFT

current-current correlator where the CFT current has scaling dimension dV = 2 + ν. Also

note that it has the correct unparticle phase.

Next notice the real part of the non-analytic terms has the same divergence at integer

dV as the unparticle propagator (1.4). However, as with the RS2 propagator, here those

divergences are cancelled by the contact terms. This must be the case since the LR propa-

gators do not exhibit any pathology at integer dV , simply because the Bessel functions are

entire functions of their order.

Finally, the scale suppressing this interaction is 1/zSM , as expected. The transmuta-

tion scale is therefore ΛU ≃ 1/zSM , which we note can be hierarchically smaller than the

AdS curvature scale κ.

6.4 Contact interactions

Inspecting the expansions for both the transverse and longitudinal propagators indicates

that local terms are present, with the scale of these interactions set by ΛU = 1/zSM . In

the effective field theory at energies below 1/zSM these local terms are given by operators

of dimensions 6, 8 and higher involving only SM currents, so that

Leff ∼ LSM + LCFT2
+ ejµ,SMOµ

CFT2
+

1

Λ2
U

e2jSM

(

c0 + c1p
2/Λ2

U + · · ·
)

jSM (6.28)

The existence and scale of these interactions is consistent with the picture that the SM

fields are composites of a CFT that breaks at the scale 1/zSM . Indeed, on the basis of

effective field theory we expect higher dimension operators to appear at this scale.
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6.5 Unitarity

Here we shall show that

m2
5 ≥ 0 (6.29)

is a sufficient condition for brane-to-brane scattering amplitudes on the LR brane to pre-

serve unitarity.

As before, there is both an s−channel and a t−channel contribution. It turns out

the t−channel contribution is purely real, so it does not contribute to the imaginary part.

Physically this is reasonable, since there is no particle production in this channel. To

check this statement mathematically requires analytically continuing the two brane-to-

brane propagators (6.10) and (6.22) (setting z = zSM ) to Euclidean space. Although at

first glance the Euclidean propagators may not appear to be real, we have confirmed that

indeed they are. That leaves the s−channel contribution.

First lets look at the transverse brane-to-brane propagator. It turns out that for this

purpose a more convenient expression than (6.10) for the brane-to-brane propagator is

instead (6.9)

∆(T )(p) = −i
π

2
(aSMzSM )

H
(1)
ν (pzSM )

1 + ib(p)
(Jν(pzSM ) + b(p)Yν(pzSM )) (6.30)

where b(p) is purely real.

Recall that the unitarity condition ImT ≥ 0 requires Im∆T (p) ≤ 0, where we follow

our convention in (5.19) for the overall signs of the transverse and longitudinal propagators.

Using H
(1)
ν (x) = Jν(x) + iYν(x),

∆(T )(p) = −i
π

2

aSMzSM

1 + b(p)2
[Jν(pzSM ) + b(p)Yν(pzSM )]2

−π

2

aSMzSM

1 + b(p)2
(Jν(pzSM ) + b(p)Yν(pzSM )) [b(p)Jν(pzSM ) − Yν(pzSM )](6.31)

which indeed satisfies Im∆(T )(p) ≤ 0.

Next, the longitudinal propagator must satisfy Im∆L(p) ≥ 0. From (6.22) the longi-

tudinal propagator can be written, after some rearrangement of terms, as

∆(L)(p, zSM ) =
1

m2
5

1

aSMzSM

Jν(p/κ) − iYν(p/κ)
√

[Jν(p/κ)]2 + [Yν(p/κ)]2

×
(

pzSMH
(1)
ν−1(pzSM ) − (ν + 1)H(1)

ν (pzSM )
)

× ([Jν(pzSM )Yν(p/κ) − Jν(p/κ)Yν(pzSM )] (1 + ν)

+pzSM [Jν(p/κ)Yν−1(pzSM ) − Yν(p/κ)Jν−1(pzSM )]) (6.32)
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so that

Im∆(L)(p, zSM ) =
1

m2
5

1

aSMzSM

1
√

[Jν(p/κ)]2 + [Yν(p/κ)]2

× (Jν(p/κ)[pzSM Yν−1(pzSM ) − (ν + 1)Yν(pzSM )]

−Yν(p/κ)[pzSMJν−1(pzSM ) − (ν + 1)Jν(pzSM )])

× ([Jν(pzSM )Yν(p/κ) − Jν(p/κ)Yν(pzSM )] (1 + ν)

+pzSM [Jν(p/κ)Yν−1(pzSM ) − Yν(p/κ)Jν−1(pzSM )])

=
1

m2
5

1

aSMzSM

1
√

[Jν(p/κ)]2 + [Yν(p/κ)]2

× ([Jν(pzSM )Yν(p/κ) − Jν(p/κ)Yν(pzSM )] (1 + ν)

+pzSM [Jν(p/κ)Yν−1(pzSM ) − Yν(p/κ)Jν−1(pzSM )])2 (6.33)

which satisfies the unitarity condition Im∆(L)(p) ≥ 0 provided m2
5 ≥ 0, which is what we

wanted to show.

6.6 High energy limit

To simplify the presentation we work in Euclidean space p2 > 0 with signature (+ + ++)

and drop the dependence of the UV boundary (i.e., p/κ ≪ 1). Then dropping irrelevant

overall factors,

∆
(T )
E (p, z = zSM ) ∝ Kν(pzSM )Iν(pzSM ) (6.34)

In the high-energy limit pzSM ≫ 1 this reduces to

∆
(T )
E (p, zSM ) ∝ 1

√

p2
+ · · · (6.35)

For the longitudinal mode one has in this limit

∆
(L)
E (p, z = zSM )∝ 1

m2
5

Kν(pzSM )Iν(pzSM )

[

z
d

dz
log Kν(pz)

][

z
d

dz
log Iν(pz)

]

|z=zSM
+ · · ·

∝
√

p2

m2
5

+· · · (6.36)

Neither of these results are analytic in p, demonstrating that, as in RS 2, the “contact”

interactions seen at p ≪ z−1
SM are not contact at all, but are resolved at energies above this

scale (i.e., at distance scales of the order of xµ ∼ zSM ).

7 Conclusions

Summary of results.

• We have derived the (tree-level) propagator for a massive vector boson in the RS

2 background, evaluated for observers living on the UV brane or, more generally,

a probe brane (“Lykken-Randall” model). The results, given in section 5.3 and
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in eqs. (6.10) and (6.22) of section 6, include both the longitudinal and transverse

components. As far as we know, these expressions have not previously appeared in

the literature.

• We have presented a comprehensive analysis of this propagator, in particular showing

that the required properties of unparticles listed in the Introduction are all fulfilled.

• The propagator does not have a CFT form. Rather, at low energies it is dominated

by short-distance interactions and contains a subdominant nonanalytic (CFT) piece.

At high energies, the propagator has the form expected in flat five-dimensional space.

• The nonanalytic piece, in addition to the obvious power-law dependence on the mo-

mentum, has also all the other properties expected of a CFT-mediated interaction.

The phase agrees with that of [2] and the CFT tensor structure [16, 22, 64] is repro-

duced upon combining the transverse and longitudinal components.

• The imaginary part of the propagator is related to the rate of escape of the vector

particles into the bulk [49]. Requiring that this rate be nonnegative, particularly for

the longitudinal polarization, gives m2
5V ≥ 0 for the bulk mass of the vector. This

condition, to the best of our knowledge, has not been previously discussed. It should

be contrasted with the well-known result for a scalar in the AdS background, in

which case negative values of m2
5S are allowed [59]. The bound m2

5V ≥ 0 generalizes

unchanged to D spacetime dimensions on the brane. For the nonanalytic piece, it

implies the lower bound on the conformal dimension dV ≥ D− 1, reproducing the D

dimensional generalization [53] of Mack’s unitarity bound [20].

• For the RS 2 model, we have also presented a detailed analysis of the vector and scalar

correlators in position space. As far as we know, such an analysis is also new. The

“contact” terms of the low-energy expansion are seen to be resolved at short distances.

The propagator exhibits two limiting regimes: a flat five-dimensional regime at short

distances and a pure CFT regime at long distances.

The transition between these regimes deserves some discussion. For large values of

the bulk mass, it occurs rather abruptly, at distances ∼ κ−1, both for the vector and

scalar cases. In contrast, when m5 ≪ κ, the transition regime becomes extended and

pure CFT sets in at larger distances. In fact, as the bulk mass is taken to zero, the

pure CFT regime is pushed off to infinity. The vector and scalar propagators behave

quite differently in the transition regime. The scalar interaction is dominated by a

(near zero-mode) state bound to the brane, and thus is essentially four-dimensional.

The vector transition is instead characterized by a (weakly) bound mode mixed with

the bulk KK states.

Discussion. Finally, it is worth discussing two additional aspects of our analysis: its

connection to the AdS/CFT correspondence and possible extensions involving nontrivial

multi-point functions.
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First, on the connection to the AdS/CFT correspondence. The latter, as proposed

in [34], connects supergravity (string theory) on the AdS5 × S5 background to a highly

supersymmetric (N = 4) SU(Nc) super-Yang-Mills theory at large Nc.
11 It should be clear

to the reader that what we consider here is not literally the same: the bulk fields in our case

do not come in supermultiplets and the KK states associated with the compact S5 (X5)

coordinates do not show up at the scale of the AdS curvature. In fact, our constructions

are intended as field theory models in a putative curved background. At the same time,

a qualitative connection between the models we study and Yang-Mills theories with large

Nc and large ’t Hooft coupling is expected. In this sense, our analysis extends the results

found by ref. [16] at weak coupling to this regime of parameters.

Even without specifying the exact dual CFT, as mentioned in section 2, one knows

to expect a field theory on AdSd+1 to be linked to some conformal field theory on the

boundary [22, 36]. It is then perhaps not surprising that a CFT shows up in the RS 2

(LR) models. As we stressed already, however, the important point is that, for a bulk

vector in the RS 2 background, this CFT is subdominant to short-distance interactions.

Tracing back to the derivations of [22, 36, 56], one notices a important difference in our

procedure compared to what was done there. In [22, 36, 56], as the brane is taken to

the boundary of the AdS space, the dominant short-distance interactions become point-

like and, if one wants to normalize to the CFT piece, infinite in strength. They are then

subtracted out by local counter-terms. In contrast, in our analysis, the brane is at a fixed

position and the short-distance terms are physical. They capture the fact that the field is

largely (but not completely) bound to the brane. They must be kept, and play a crucial

role in phenomenology [16].

The RS 2/AdS/CFT connection has been extensively discussed before, although, it is

interesting to note, usually in what we called above the transitional regime. Specifically,

as the dual 4d description one considers a photon mixing with the CFT via a sequence of

the CFT bubble insertions on the photon line [28–31]. This quantum effect in the CFT

picture is characteristically captured by the classical computations in the AdS background

and is clearly seen in our analysis, as outlined above.

The connection can be also easily seen in the large-distance behavior of the RS 2

propagator, where, as we saw, the CFT interaction shows up directly. This regime is

generically present, with the exception of the strictly massless case (i.e., for general CFT

dimension dV 6= 3). In fact, for m5 ∼ κ, pure CFT is what one sees more or less immediately

at distances κ−1, as the theory transitions out of the flat 5d regime. In the four-dimensional

description, this means the “photon” is massive and, at large distances, can be integrated

out leaving pure CFT.

That the CFT behavior dominates at large distance raises a puzzle; for one might

conclude that the CFT dominates low-energy scattering amplitudes. Yet, we saw that for

vector operators the non-analytic contribution is always subdominant in momentum space.

So how can these two statements both be correct? The point is to distinguish between

11Dual theories with fewer supersymmetries (with AdS5×X5 on the gravity side) have also been discussed.

See [65] for an overview.
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plane-wave scattering and scattering at fixed impact parameter. Plane-wave scattering

amplitudes averages over all impact parameters, so all distance scales contribute. By

contrast, scattering amplitudes at fixed and large enough impact parameter are dominated

by the interactions at that distance scale, and therefore by the CFT.

Finally, it is important to consider the theory beyond its propagator. It is well-known

that, in the case of a scalar CFT operators, two-point and three-point functions are fixed by

conformal symmetry, up to constants. Any realization of a CFT must, therefore, lead to the

same form and it is reassuring that the models we consider obey the required unparticle

properties.12 At the same time, four-point functions and on (and, in the case of bulk

QED, already the three-point function [21, 22]) are not uniquely fixed by the symmetry.

By studying these, we can learn what kinds of CFTs are obtained with the RS 2/LR

realizations (cf. [22]). This is also important from the phenomenological point of view, to

describe the “decay”, or “showering” of unparticles back to the Standard Model states.

The higher-point functions in AdS are obtained by adding field interactions in the

bulk, yielding the Witten diagrams [36]. Various aspects of these calculations have been

since extensively studied, [22, 66, 67]. In the case of the scalar field in the RS 2 model,

a three-point function is analyzed in [32] and both the contact terms and the noncontact

CFT interaction are discussed. In the setup of the Super-Yang-Mills theories at large, but

finite Nc, three-point functions appear, scaling as 1/Nc and independent of the ’t Hooft

coupling [67]. See [68, 69] for a clear review and further details.

From the point of view of experimental signatures, an extremely important observation

is that the shape of the showers is expected to be qualitatively different [8] in the AdS-

based models and in the weakly coupled QCD-like CFTs. For CFTs that have an AdS dual

description, the shower is more spherical, and less like a QCD-jet [8, 70, 71]. Refs. [70,

72] have also investigated certain features of gauge theories as the ’t Hooft coupling and

numbers of colors Nc are varied.

This illustrates the following basic point: different regimes of unparticles are possible.

The RS 2 and LR models considered here capture one such regime. We, therefore, would

like to stress that the models we considered represent realizations of unparticle physics.

The RS2/unparticle relation is not to be viewed as a one-to-one correspondence or duality.

Characterizing signatures of conformal fields theories will continue to be a fascinating

subject and we hope to contribute more to it in future work.
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